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Abstract—Thanks to regulatory policies such as the General
Data Protection Regulation (GDPR), it is essential to provide
users with the right to erasure regarding their own private data,
even if such data has been used to train a neural network
model. Such a machine unlearning problem becomes even more
challenging in the context of federated learning, where clients
collaborate to train a global model with their private data. When
a client requests its data to be erased, its effects have already
gradually permeated through a large number of clients, as the
server aggregates client updates over multiple communication
rounds. All of these affected clients need to participate in the
retraining process, leading to prohibitive retraining costs with
respect to the wall-clock training time.

In this paper, we present the design and implementation of
KNOT, a new clustered aggregation mechanism custom-tailored
to asynchronous federated learning. The design of KNOT is
based upon our intuition that, with asynchronous federated
learning, clients can be divided into clusters, and aggregation
can be performed within each cluster only so that retraining
due to data erasure can be limited to within each cluster as
well. To optimize client-cluster assignment, we formulated a
lexicographical minimization problem that could be transformed
into a linear programming problem and solved efficiently. Over a
variety of datasets and tasks, we have shown clear evidence that
KNOT outperformed the state-of-the-art federated unlearning
mechanisms by up to 85% in the context of asynchronous
federated learning.

I. INTRODUCTION

As one of the emerging paradigms in distributed machine
learning, federated learning (FL) assumes that edge devices,
also known as clients, collaboratively train a global model
with their local private data, which are further aggregated by
a central server. Compared to centralized training of machine
learning models, such a design allows clients to keep and
process their data locally, rather than sending them to the
central server. With the recent introduction of data protection
laws such as the General Data Protection Regulation (GDPR)
in the European Union, however, it is essential to provide users
with the right to erasure regarding their own private data, even
if such data have already been used to train the global model
in federated learning. In the context of centralized training,
the right to erasure has led to recent research on machine
unlearning [1].

Erasing the effects of select data samples in a trained
model, however, is quite challenging to achieve, especially
if we do not wish to incur the exorbitant costs of retraining
from scratch. Without a doubt, it is even more challenging
to accomplish machine unlearning in the context of federated
learning: erasing data samples from one client requires a large
number of clients to engage in a retraining process, due to

server aggregation in each communication round. One can
conceive of the effects of one data sample gradually propa-
gating to models used for local training at more clients, as
federated learning progresses. Therefore, machine unlearning
in the federated learning setting, called federated unlearning,
requires mechanisms that are even more carefully designed to
minimize their retraining costs.

In federated unlearning, the primary objective is to minimize
the time it takes to complete the retraining process, when a
subset of the clients request the erasure of some of their data
samples. In FedEraser [2], an approximation algorithm has
been proposed as an alternative retraining mechanism, such
that fewer rounds are needed for the retraining process. It is
not straightforward, however, to evaluate the effectiveness of
such approximation algorithms for retraining, and FedEraser
proposed to use the accuracy of membership inference attacks
for such evaluations. Though such approximation algorithms in
the literature could reduce the retraining overhead as compared
to the naive mechanism of retraining from scratch, they have
not been able to reduce the number of clients involved in such
a retraining process. As the effects of one data sample to be
erased permeate through the entire group of clients as server
aggregation progresses, most — if not all — of the clients
may need to participate in the retraining process.

In the conventional context of synchronous federated learn-
ing, as most of the clients participate in the time-consuming
retraining process, the overall performance — as measured
by the wall-clock time of converging to a target accuracy —
will be severely affected. If we wish to improve the overall
performance even with the possibility of retraining, we may
consider minimizing the number of clients that participate
in the retraining process. Towards this objective, we should
consider operating the FL training session in an asynchronous
fashion: the server does not need to wait for all its selected
clients to report their model updates, and proceeds with
its aggregation process as soon as the model update from
a minimum number of clients arrives. It has been shown
in the literature (e.g., PORT [3] and FedBuff [4]) that the
performance of such an asynchronous paradigm is far superior
to synchronous FL, especially in cases where clients are
heterogeneous in their training capabilities.

In asynchronous FL, different clients progress at different
speeds naturally in their local training. Intuitively, if we allow
some clients to move forward towards global convergence
while retraining only a small subset of the clients as data
samples are erased, the inherent overhead of retraining can
be substantially mitigated. A simple yet effective mechanism



is to divide all clients into a small number of clusters, and
aggregate client updates within the confines of each cluster
only. The immediate effect of such clustered aggregation is
that, if any client requests its data samples to be erased, only
clients within the same cluster need to be retrained, while other
unaffected clusters may continue with normal FL training.

In this paper, we introduce the new paradigm of asyn-
chronous federated unlearning, and propose KNOT, our new
federated unlearning mechanism that uses clustering to miti-
gate the negative effects of unlearning. But how should clients
be assigned to each of the clusters? In asynchronous FL,
fast clients are known to contribute more to the training
process; as such, the local training speed of each client should
be considered, and fast clients should be assigned to the
same clusters. On the other hand, due to the inherent non-
i.i.d. data heterogeneity in federated learning, model updates
from different clients are known to be naturally clustered [5]
with respect to their similarity to one another. Thus, one may
consider assigning clients with similar model updates to the
same clusters as well.

The main contribution of this paper is to transfer such an
intricate problem of assigning clients to clusters to a solvable
optimization problem. With a precise definition of a pair-
wise match rating between clients and pre-determined clusters,
the problem of minimizing the wall-clock time to process
retraining is equivalent to minimizing the match ratings of
all clients, which we further formulate as an integer lexico-
graphical minimization problem. With empirical evidence, we
show that solving such an optimization problem offers superior
performance than simply clustering the clients randomly.

However, solving integer optimization problems at any scale
in an online fashion is likely to be impractical. As a highlight
of this paper, our analysis shows that our lexicographical min-
imization problem has a separable convex objective function
and a totally unimodular constraint matrix, and can thus be
solved directly using an off-the-shelf linear program solver
[6].

Highlights of our original contributions in this paper are
as follows. First, to our best knowledge, we are the first to
consider federated unlearning in the asynchronous FL setting.
Second, we proposed KNOT, a new federated unlearning
mechanism that is designed to mitigate the retraining overhead
by assigning clients to clusters, and performing aggregation
within each cluster only. Third, we addressed the key challenge
of assigning clients to clusters by formulating it as an integer
lexicographical minimization problem, and our theoretical
analyses show that such a problem can be efficiently solved
using a linear program solver. Finally, we implemented KNOT,
as well as the state-of-the-art mechanisms in the literature,
in a scalable framework for FL research, and evaluated its
performance with a variety of image classification and lan-
guage modeling tasks. We show that KNOT has substantially
outperformed the state-of-the-art [2], [7] with respect to the
wall-clock time for converging to a target accuracy in the
federated unlearning process.
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Fig. 1. In asynchronous FL, clients spend different amounts of time for
training and communication, and the server only needs to wait for a subset
of clients to report back.

II. PRELIMINARIES AND RELATED WORK

As an emerging distributed machine learning paradigm,
federated learning (FL) keeps private data at the clients to
protect their privacy [8]. In each communication round, the
server sends the initial model to a selected subset of clients,
and clients use their local data to train the received model
and send updates back to the server. The server then uses an
aggregation algorithm to aggregate all received updates into a
new model, in preparation for the next communication round.

Asynchronous federated learning. In practice, clients have
different computing power and communication capabilities,
leading to different amounts of time for them to finish training.
In order to speed up the FL training session, asynchronous
aggregation on the server has recently been proposed [4], [9].
The gist of asynchronous aggregation is simple: the server only
needs to wait for a minimum number of faster clients before
aggregation proceeds. For example, in Fig. 1, the slowest
client, #4, is not waited for by an asynchronous server before
aggregation, which may speed up the overall convergence.

Asynchronous FL naturally favors faster clients in each
communication round, who contribute more to the conver-
gence of the global model in the training session. The disad-
vantage of asynchronous aggregation, however, is that slower
clients will inevitably be training based on models that are out-
of-date and stale, and as their updates are used for aggregation,
the accuracy of the aggregated model can be negatively
affected. Still, it has been shown [3], [4] that the benefits of
asynchronous aggregation outweigh its shortcomings and that
the overall wall-clock time it takes to converge is substantially
improved over synchronous aggregation.

Machine unlearning. With the recent emergence of regu-
latory policies that require corporations to provide the right to
erase private data from users, machine unlearning has garnered
increasing research attention. As illustrated in Fig. 2, with
the machine unlearning process, a new neural network model
should be produced by unlearning all the effects of any private
data that are requested to be erased. Existing research on
machine unlearning aims to produce the unlearned model
with the highest possible efficiency, without taking the naïve
approach of retraining an initial model from scratch.

Towards the goal of making the machine unlearning pro-
cess more efficient, the first machine unlearning mechanism
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Fig. 2. The primary goal of the machine unlearning process is to produce
a new neural network model with the erased data unlearned, equivalent to a
model initialized and then trained without using the erased data.

was proposed by Cao et al. [10], which was asymptotically
faster than retraining from scratch by transforming learning
algorithms into a summation form. Subsequent works in the
literature focused on approximating the model after unlearning
the erased data [11]–[14], sometimes with theoretical guaran-
tees that an adversary cannot extract information about the
erased data [15]. Towards the objective of reducing the over-
head of retraining, Ginart et al. [16] proposed two clustering
algorithms to divide data into clusters, whereas other similar
mechanisms were proposed more recently [1], [17].

Federated unlearning. The vanilla machine unlearning
process may be applied in the context of federated learning,
which is referred to as federated unlearning in the literature.
As clients will not share their private data with the server,
the federated unlearning process can only be performed on
the clients. In addition, as the server aggregates client updates
across multiple communication rounds, the effects of data from
one client will eventually propagate to models trained by all
the participating clients. When any data needs to be erased,
all the clients may need to retrain from scratch over a time-
consuming retraining process. In response to this challenge,
FedEraser [2] designed an approximation algorithm to im-
prove the efficiency of such a retraining process. Alternative
approximation algorithms have been proposed more recently,
using knowledge distillation [18] or class-discriminative prun-
ing [19]. A common technique to evaluate the effectiveness
of these approximation algorithms was to use membership
inference attacks to show that any remaining contributions of
the erased data cannot be detected by the attackers.

However, these existing approximation mechanisms may
have violated regulatory policies such as GDPR, which stipu-
lates that any effects of data must be erased completely without
a trace. In response, Liu et al. [7] proposed to improve the
efficiency of the retraining phase, which may be the only law-
compliant way to properly perform federated unlearning. It
used the second-order AdaHessian optimizer [20] to speed
up the retraining process. However, it was still retraining
from scratch without any further optimization in the federated
unlearning process. In this paper, we proposed an orthogonal
mechanism such that an optimized unlearning process, custom-
tailored for federated learning, can be carried out.

III. RANDOM CLUSTERED AGGREGATION:
DESIGN AND EMPIRICAL OBSERVATIONS

The ultimate objective in federated unlearning is to erase
the effects of one or more pre-specified data samples from
a trained model. Through rounds of model propagation and
redistribution, the influence of a client’s local data samples
will continuously affect the other clients that the server selects
in the future rounds. As such effects ripple throughout the
system, the only way to erase all the effects of any of the
local data samples from client A is to retrain from scratch.
However, the computation costs of retraining from scratch on
all affected clients are prohibitively high during such a vanilla
federated unlearning process.

Random clustered aggregation: an orthogonal approach
to retraining algorithms. In the specific scenario of asyn-
chronous FL, faster clients tend to go through more rounds of
communication as their updates are aggregated and selected
more frequently than slower clients. It has been clearly shown
that when clients are heterogeneous in their training speeds,
asynchronous FL outperforms synchronous FL by a substantial
margin. Yet, the effects of local data samples from faster
clients tend to propagate more quickly than slower clients as
well, which makes federated unlearning more complex and
challenging. To our best knowledge, potential mechanisms of
mitigating the exorbitant costs of retraining from scratch in
the context of asynchronous FL have not yet been explored in
the literature.
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Fig. 3. An example of asynchronous clustered aggregation where four clients
have been assigned to two clusters. If client #4 requests to erase the effects of
its data from the server, only clients in cluster #2 need to be retrained, while
clients in cluster #1 may proceed normally with their FL training process.

In contrast to existing work that sought to replace the naïve
mechanism of retraining from scratch with approximation
algorithms (e.g., [2]), we propose to take a decidedly different
approach that is orthogonal to approximation algorithms. Intu-
itively, if we can reduce the ripple effect of contributions from
any particular client in the FL training process, the number of
clients that must participate in the retraining process will be
substantially reduced. With all existing works in the literature,
as soon as a client’s contributions have propagated throughout
the entire pool of participating clients, all clients will need to
participate in the retraining process when federated unlearning
commences.



Instead, we propose to construct a “firewall” between clus-
ters of clients in the system, such that server aggregation is
carried out within each cluster only. With such a mechanism,
which we refer to as clustered aggregation, the ripple effect
of one client’s contributions will only affect other clients
in the same cluster, and clients outside the cluster will no
longer need to be retrained. Fig. 3 shows how clients can be
clustered and how the server aggregates the updates within
each cluster only. It is worth noting that our new mechanism
of clustered aggregation is orthogonal to any innovations in the
retraining mechanism: it is complementary to both the naïve
mechanism of retraining from scratch and all its alternatives
using approximation algorithms.

The need for asynchrony. It turns out, however, that po-
tential benefits from such a clustered aggregation mechanism
come with a caveat: it only works effectively in the specific
context of asynchronous FL, where client contributions are
aggregated asynchronously without waiting for the slower
clients. In the event that clients within one of the clusters
need to roll back to a previous round and start their federated
unlearning process, all the clients within the other clusters can
proceed with their federated learning process normally. This
phenomenon, where some clusters move forward in time while
some other clusters roll back at the same time, is only feasible
with asynchronous FL.

Criteria for terminating the training session. When is
the right time for clustered aggregation to terminate, and
for the server to begin aggregating across the clusters? In
our random clustered aggregation mechanism, we consider
two thresholds: one for the required validation accuracy, and
one for the standard deviation across a recent history of
such validation accuracies. As long as the highest validation
accuracy across clusters is higher than the first threshold, and
the standard deviation of recent accuracies is lower than the
second, the training session will terminate, and the server
will then perform its final round of aggregation to produce
converged global model. Due to non-i.i.d. data distributions
across the clients’ local data, such an aggregation process
is inevitably less efficient with respect to converging to the
best possible accuracy as quickly as we can. It is therefore
critically important to design a suitable clustering algorithm
to minimize such a drag on training efficiency in a federated
learning session, which we will soon elaborate in great detail
in the next section.

Proof-of-concept experimental evaluations. Though suit-
able strategies for distributing clients across clusters are open
to further investigation, we wish to first conduct some pre-
liminary experiments to verify that clustered aggregation can
indeed improve training performance in asynchronous FL,
with some of the clients erasing their data. For the sake of
simplicity, though random clustered aggregation can work with
any retraining algorithm, we retrain from scratch when clients
request erasing their data.

In our proof-of-concept experiments, we use the MNIST
dataset to train the LeNet-5 model, with 100 clients to be
randomly assigned to 5 clusters. We select 30 clients in

each communication round, and 15 clients as the minimum
number of clients to be aggregated asynchronously. The data
distribution of local datasets is non-i.i.d., sampled with the
symmetric Dirichlet distribution with a concentration of 5.
To simulate the heterogeneity across clients, we use a heavy-
tailed Pareto distribution to simulate the asynchronous clients’
training time, with its positive parameter α = 1.

Data erased at 130s

Fig. 4. A comparison study between synchronous FL baseline, asynchronous
FL baseline, and random clustered aggregation using the MNIST [21] dataset,
with full retraining from scratch after data erasure.

With 5 clusters, we proceed to compare the training per-
formance of random clustered aggregation with two baseline
algorithms: FedBuff [4] as our asynchronous FL baseline, and
Federated Averaging (FedAvg) [8] as our synchronous base-
line. Our results have been shown in Fig. 4, where we shaded
the range of validation accuracies within each of the clusters.
From these results, we confirmed the fact that synchronous
FL with FedAvg was much slower than asynchronous FL
with FedBuff before clients request to erase their data at
the same wall-clock time (around 140 seconds). Once data
erasure occurred, we observed a substantial reduction in global
validation accuracy with the asynchronous FL baseline. This
clearly showed the ripple effect of the erased data, in that all
affected clients needed to be retrained from scratch.

In stark contrast to both synchronous and asynchronous
baselines, only validation accuracies of some clusters expe-
rienced a substantial reduction with random clustered aggre-
gation, while other clusters could be allowed to continue with
their training process normally. As a result, global accuracies
were not affected until convergence. After the criteria for
terminating the training session is satisfied, the server produces
the global model in the final round, which occurred at 360
seconds with a final accuracy of 90%, and outperformed both
baselines. Further evaluations have shown that the number of
clusters had no material effects on the training performance;
therefore, we will continue to use 5 clusters in our later
experiments in Section V.

IV. KNOT: ALGORITHM AND ANALYSIS

Our preliminary experiments in Section III have clearly
shown the effectiveness of our proposed clustered aggregation
mechanism with respect to expediting the retraining process
in the context of asynchronous FL. How clients are to be



assigned to the clusters, however, remains to be determined.
In our experiments so far, clients are assigned to the clusters
randomly, but this is not the best approach in terms of
maximizing the performance for two intuitive reasons. First,
fast clients may be mixed with slower ones in the same
cluster, making it less likely for training in a cluster to evolve
quickly through more rounds with fast clients only. This is
especially the case when a staleness bound is imposed in
asynchronous FL, and fast clients need to wait for slow ones to
reach their staleness bound. Second, random assignments may
lead to similar non-i.i.d. data distributions within the cluster,
which may suffer from the same challenges from such data
heterogeneity as conventional FL without clustering.

In this section, we present KNOT, our optimized clustering
aggregation mechanism for asynchronous federated unlearn-
ing. Towards the design of KNOT, we first wish to formulate
an optimization problem to find a client-cluster assignment
that offers better performance than assigning clients to clusters
randomly. By solving such an optimization problem, clients
will then be distributed more effectively and reasonably to
each cluster, with the hope of contributing as much as possi-
ble towards minimizing the wall-clock time of asynchronous
federated unlearning.

A. Optimizing Client-Cluster Assignment

First, we wish to discuss what types of clients should
be clustered together. In asynchronous FL, clients are likely
heterogeneous with respect to their local resources, leading
to different completion times in a communication round.
Naturally, if we assign faster clients to some clusters and slow
clients to others, clusters with faster clients may converge
faster over more communication rounds. This leads us to
consider local training times of the clients as the first factor
that affects client-cluster assignment.

We consider assigning clients {Ck}k∈K to clusters
{Ln}n∈N , where K = {1, 2, . . . ,K} and N = {1, 2, . . . , N}
are the corresponding indexing sets, and K and N correspond
to the total number of clients and clusters, respectively. We
define the training time Tk as the wall-clock time that elapses
after the server sends the model and until it receives a param-
eter update from client Ck. A client with more computational
resources may have a small Tk. In our optimization problem,
we prefer to cluster the clients based on their training times.

The next factor that is likely to influence the convergence
speed in a training session is model disparity. Due to non-
i.i.d. data distributions, we use model disparity in our formu-
lation to help assign clients with similar data in one cluster.
The model disparity Sk measures how much client Ck’s data
diverges from the global model. We introduce cosine similarity
Θ(u, v) = u·v

‖u‖‖v‖ which measures the angle between two
vectors u and v. Starting with a random initial model with
model parameters ω0, we perform one training round on each
client Ck to obtain its local update parameter ∆1

k. These
local updates are aggregated to form a global model with
parameter ω1. Intuitively, the vector ω0 − ω1 represents the
consensus of the overall clients while ∆1

k reflects the influence

of the individual client. Thus, a small angle between these two
vectors implies that client Ck is a “good” client whose data
looks congruent to the overall global model. Now, we can
define the model disparity as Sk =

1−Θ(ω0−ω1, ∆1
k)

2 , where
we transform Θ such that Sk ∈ [0, 1] ∀k ∈ K. Note that the
smaller Sk is, the smaller the cosine similarity, and the more
representative client Ck is concerning all clients.

In short, we aim to distribute the clients based on how
“good” it is; namely, a good client should have a relatively
short training time and a low model disparity. To achieve this
goal, we set a target training time T̃n and a target model
disparity S̃n for each cluster as anchor points and assign
clients based on their Tk and Sk values. Suppose the training
times of all clients span the range from S∗ to S∗, we divide the
ranges evenly by letting T̃n = S∗+S∗−S∗

N−1 ·(n−1) and S̃n = n
N .

Next, to numerically represent the difference between client
Ck and cluster Ln, we define the match rating as dkn =
‖ [a(T̃n − Tk), b(S̃n − Sk)] ‖2, which is a weighted l2 norm
for the matrix scaled by hyper-parameters a and b.

The match rating allows us to tell whether a client is suitable
for a cluster or not. For an arbitrary client Ck, dk1 ≤ dk2

means that cluster L1 is a better match for the client than
cluster L2 is, and we should assign it to L1. At first glance,
one may think that it suffices to choose the cluster that results
in the lowest match rating for each client. However, our
problem is more subtle because we need to ensure that each
cluster has sufficient client data to train a decent cluster model
that can contribute appropriately to the overall model after
aggregation. Ideally, the resulting clusters should have sizes
that are most beneficial for their effective convergence in the
training session. For instance, suppose the difference in dk1

and dk2 is insignificant, and that L1 is large while L2 only
has a few clients. In this case, it might be better in practice
to assign the client to cluster L2 so that when data erasure
is requested, only a smaller fraction of the client needs to
participate in retraining. For this reason, the match rating is
not the only standard for our assignment. All decisions are
interdependent, making our problem a more complicated one
that involves more constraints.

B. Formulating the Optimization Problem

To begin formulating our problem, we represent a client-
cluster assignment using a vector x ∈ {0, 1}KN , x =
(x11, . . . , xKN ), where xkn = 1 if client Ck is assigned to
cluster Ln and 0 otherwise. Then the vector f = (d11x11,
. . . , dknxkn, . . . , dKNxKN ) provides a full description of our
assignment, where the match rating of each pair is multiplied
by the value which indicates whether the pair is assigned.

For our optimal clustering mechanism in KNOT, we aim
to minimize the deviation of clients in the same cluster by
keeping all dkn values of the assigned client-cluster pairs
to be as small as possible. Note that we do not seek to
minimize the average match ratings of all assigned pairs.
Instead, we emphasize reducing extreme values while keeping
all coordinates as small as possible. More specifically, we
want to minimize the largest value of vector f , then minimize



the second largest value, and so on. This objective leads us
to formulate our problem as a lexicographical minimization
problem. We present the basic definitions in the following:

Definition 1: For α ∈ Rn , let 〈α〉 = (α̃1, α̃2, . . . , α̃n) be
α sorted in non-increasing order.

Definition 2: For α ∈ Rn, β ∈ Rn, we say that α
is lexicographically smaller than β, denoted as α ≺ β, if
∃n0 ∈ {1, . . . , n} such that α̃n0

< β̃n0
and n < n0

=⇒ α̃n = β̃n. In addition, α is lexicographically no greater
than β if α ≺ β or two vectors have the same entries. That
is, α � β if α ≺ β or α̃i = β̃i, ∀i ∈ {1, 2, . . . , n}.

Definition 3: Given a collection F of real vectors of the same
length, we say that α0 ∈ F is the lexicographical minimum of
F if α0 � α,∀α ∈ F . For a function f : Rn → Rn; n ∈ R,
lexmin

x
f = x∗ if f(x∗) � f(x),∀x.

Intuitively, the process of finding lexmin
x

f accounts for
looking for a vector x that minimizes the largest coordinate in
the resulting vector f(x), then minimizing the second largest
value while keeping the largest coordinate unchanged. This
procedure continues until the smallest value is minimal. Thus,
the match rating of each client would be kept to the minimum
as we desire.

We are now ready to formulate our lexicographical opti-
mization problem.

lexmin
x

f = (d11x11, . . . , dknxkn, . . . , dKNxKN ) (1)

s.t.
N∑
n=1

xkn ≤ c1,∀k ∈ K (2)

N∑
n=1

xkn ≥ 1, ∀k ∈ K (3)

K∑
k=1

xkn ≥ c2, ∀n ∈ N (4)

K∑
k=1

xkn ≤ c3, ∀n ∈ N (5)

xkn ∈ {0, 1}, ∀n ∈ N , ∀k ∈ K (6)

where the lexicographical minimum of function f corresponds
to the desired client-cluster assignment.

Constraints (2)–(4) are non-trivial as they place more re-
strictions on the valid client-cluster assignments. For instance,
consider the scenario where most clients have the smallest dkn
when n = n∗. In this case, most clients would be distributed
to cluster Ln∗ , which would result in one large cluster with
other small clusters. It is difficult to judge if it is ideal or
not because retraining on a large cluster would, to a certain
extent, make KNOT lose its significance and appeal. We aim
to make the training times for clients within a cluster as
comparable as possible. However, if a cluster only has a small
number of clients, over-fitting may cause the cluster model to
be inadequate.

Another potential problem arises when the same client is
assigned to multiple clusters in order to meet the lower bound

on the number of clients per cluster. When this client requests
erasing its own data, retraining is required for all the clusters
it belongs to. To avoid this situation, we should also consider
an upper bound on the number of clusters a client can be
assigned.

For the above reasons, we need constraints (2)–(3) to make
sure the number of clusters a client can belong to is between
1 and c1; similarly, constraints (4)–(5) require the number
of clients in each cluster to be between c2 and c3. In our
forthcoming experiments in Section V, c1, c2, c3 are set to 1,
K/2N , and K/2, respectively.

C. Transforming into an LP Problem

Due to the complexity of solving the integer lexicographical
optimization problem that we proposed, we need a method to
transfer the original problem to a linear programming (LP)
one, so that it can be more easily solved using off-the-shelf
LP solvers. According to R. R. Meyer [6], a specific class
of integer linear problem with a separable convex objective
function and a totally unimodular (TU) constraint matrix can
be solved as an LP problem. In this section, we will show that
our problem belongs to the aforementioned class. Namely, we
will transform the objective function to a separable convex one
(Part A) and show that the corresponding matrix is TU (Part
B).

Part A: Separable convex objective. A separable convex
function is one that can be represented as a sum of multiple
convex functions. To replace the original lexicographical ob-
jective function with a separable convex one, for any arbitrary
vector α ∈ Rn, we consider the following function:

φ(α) =

n∑
m=1

nαm (7)

In particular, the exponential function is convex everywhere,
and that the function φ(α) preserves � when α is integer-
valued, as stated in the following lemma [6]:

Lemma: ∀α, β ∈ Rn. α � β ⇐⇒ φ(α) ≤ φ(β).
We will transform each match rating dkn in the objective

function to an integer-valued Dkn by scaling and rounding.
Let d∗ = max

k∈Kn∈N
dkn and d∗ = min

k∈Kn∈N
dkn, and define

Dkn = ddkn−d∗
d∗−d∗ · 100e. From our experiments, we observed

that Dkn is sufficient to classify clients despite its reduced
level of accuracy. In our problem, the length of vector n =
K · N and αm = dknxkn. Since α � β is equivalent to
φ(α) ≤ φ(β), we can apply function (7) and simplify our
original objective function to the following form:

min
x

∑
k∈K

∑
n∈N

(KN)Dknxkn

s.t. (2), (3), (4), (5), (6).
Part B: Totally unimodular matrix. Before proving that

our constraint matrix is totally unimodular (TU), let’s explic-
itly formulate constraints (2), (3), (4), (5) in the form Ax ≤ b.

Let Mij refer to the entry on the i-th row and the j-th
column of a matrix M . Let A1 ∈ ZK×KN be the client



indicator matrix and consider each column as representing a
client-cluster pair. For each column j, A1,ij = 1 indicates that
client Ci is in the client-cluster pair j; otherwise, A1,ij = 0.
Similarly, A2 ∈ ZN×KN is the cluster indicator matrix, where
A2,ij indicates whether or not cluster Li is in the client-cluster
pair j. Now, we can rewrite our problem as follows:

min
x

∑
k∈K

∑
n∈N

(KN)Dknxkn

s.t. Ax ≤ b
0 ≤ x ≤ 1, x integer

(8)

where

A =


A1

−A1

A2

−A2

 ; b =


c1
−1
c3
−c2


A matrix M ∈ Rm×n is TU if every square sub-matrix M ′

of M has det(M′) ∈ {−1, 0, 1 }. This is an important property
because it ensures that the inverse of any square sub-matrix
is integral, thus all extreme points of the feasible region are
integral. It is also known that a matrix M with all entries in
{−1, 0, 1} is TU if there exists a partition of every subset R ⊆
{1, 2, . . . ,m} into I1 and I2 such that for each column j,

|
∑
i∈I1

mij −
∑
i∈I2

mij | ≤ 1 (9)

Since matrix A contains only 0’s and 1’s, it suffices to
provide a partition strategy for any subset of rows of A such
that inequality (9) is satisfied.

Let R ⊂ { 1, . . . , 2K+ 2N } be given and we will partition
R as follows. For each k ∈ { 1, . . . ,K }, if k ∈ R, put k in
I1 and K+k in I1, if K+k ∈ R; otherwise, put K+k in I2

if K + k ∈ R. This strategy ensures that 0 ≤
∑

i∈I1
i≤2K

Aij −∑
i∈I2
i≤2K

Aij ≤ 1.

Next, for each n ∈ {1, . . . , N}, if 2K+n ∈ R, put 2K+n
in I2, and if 2K+N+n ∈ R, put 2K+N+n in I2 ; otherwise,
put 2K + N + n in I1 if 2K + N + n ∈ R. Similarly, we
have −1 ≤

∑
i∈I1
i>2K

Aij −
∑

i∈I2
i>2K

Aij ≤ 0. Adding up these

two inequalities, we see that inequality (9) is satisfied. Thus,
we have proved that matrix A is TU.

From an integer LP to an LP problem. We have shown
that problem (8) has i) a separable convex objective function,
ii) a TU constraint matrix, and iii) an integer matrix b. By the
result in [6], the optimal solution for problem (8) is the same
as the x-coordinates of the optimal solution of the following
LP problem:

min
x,λ

∑
k∈K

∑
n∈N

λ0
kn + (KN)Dknxknλ1

kn

s.t. xkn = λ1
kn,∀k ∈ K,∀n ∈ N

λ0
kn + λ1

kn = 1,∀k ∈ K,∀n ∈ N
λ0
kn, λ

1
kn, xkn ∈ R+,∀k ∈ K,∀n ∈ N

Constraints (2), (3), (4) and (5).

where λ0
kn, λ1

kn are newly introduced variable used in the λ-
representation.

Thus, we have illustrated a method for efficiently solving
our original integer lexicographical minimization problem.

V. EXPERIMENTAL EVALUATION

A. Implementation and Preparation

We have implemented KNOT in PLATO, a new open-source
research framework for asynchronous FL that we built from
scratch. One of the key features in PLATO has been the support
for asynchronous FL, with the ability to measure the elapsed
wall-clock time in a FL training session while achieving
stellar scalability and reproducibility, so that state-of-the-art
FL mechanisms can be fairly and accurately compared in the
same real-world or emulated environment. In this work, we
have made the following improvements to PLATO.

Achieving stellar scalability. To scale up the number of
clients with limited CPU and GPU (CUDA) memory, PLATO
launches a limited number of processes, which depends only
on resource availability. For example, to train a MNIST model,
one client uses around 1 GB of CUDA memory. With an
NVIDIA A4500 GPU of 20 GB CUDA memory, approxi-
mately 20 clients can train at the same time. In this case,
PLATO will launch 20 processes only, and if more clients are
selected in each round, they will run in consecutive batches.
With a sufficient amount of time, PLATO is scalable to an
unlimited number of clients. Such scalability is the key to the
success of completing our large-scale experiments later in this
section.

Measuring wall-clock training times. Better scalability,
however, does come with additional complexities when the
wall-clock training times are measured in asynchronous FL. As
one example, it may occur that faster clients in the next batch
waiting to be launched on the GPU may finish even sooner
than slower clients in the previous batch, if the clients were to
be launched simultaneously. This can be handled correctly in
our implementation by simulating the wall-clock time in each
communication round, by asking all the clients who reported
in real-time but are still considered training in simulated time
to be kept in a priority queue, sorted by their finish times.

Improving reproducibility. In asynchronous FL exper-
iments, random number generators are used for sampling
participating clients and local datasets. For fair comparisons
across different asynchronous FL mechanisms, we have care-
fully devised techniques to improve the reproducibility of
our experiments by seeding, saving and restoring our random
number generators, and by protecting random number gener-
ation from the effects of third-party frameworks. For further
reproducibility, all our source code has already been made
available as open-source to the research community.

Datasets and models. We have chosen four datasets,
CIFAR-10 [22], Federated EMNIST [23], Purchase-100 [24]
and Tiny Shakespeare [8] in our forthcoming experiments.
They span a variety of tasks, including image classifica-
tion (CIFAR-10 and Federated EMNIST), behavioral pattern
recognition (Purchase-100), and natural language processing

https://github.com/TL-System/plato


TABLE I
FOUR TRAINING TASKS WE TESTED: PARAMETER SETTINGS.

Parameter CIFAR-10 FEMNIST
Purchase-

100
Tiny-

Shakespeare

K 100 250 100 70/50
# selected 20 200 60 50/30

# minimum 15 150 30 25
# erased 1/2 1/2 1/2 2/4
Samplers non–i.i.d. non–i.i.d. non–i.i.d. i.i.d.
Models VGG-16 LeNet-5 MLP GPT-2

(Tiny Shakespeare). It is worth noting that the Federated
EMNIST (or FEMNIST) dataset is specifically designed for FL
experiments, by pre-processing and partitioning the dataset
into 3597 clients using metadata in the original EMNIST dataset.
Important hyperparameters that we used in our experiments
are listed in Table I, including the total number of clients, the
number of clients selected per round, the minimum number
of clients aggregated in asynchronous FL, and the number of
clients requesting data erasures. Similar to Section III, we use
a heavy-tailed Pareto distribution to simulate the asynchronous
clients’ training time, with its positive parameter α = 1. We
run our experiments on an in-house server with three NVIDIA
RTX A4500 GPUs with 20 GB of CUDA memory each, 40
CPU cores, and a total of 256 GB memory.

B. KNOT: Performance Evaluation

Performance with benchmark datasets. To evaluate the
performance of KNOT, we choose to compare it with (1)
synchronous FedAvg as the synchronous baseline algorithm;
(2) FedBuff [4] as the asynchronous baseline algorithm; (3)
the rapid retraining algorithm proposed by Liu et al. [7], a
state-of-the-art exact retraining algorithm (labeled as INFOCOM
2022 in our figures) without using approximations; and (4)
random clustered aggregation without optimization. Though
KNOT can work with any retraining algorithm, we evaluate it
with the naïve algorithm of retraining from scratch so that its
potential performance advantage is not attributed to the choice
of the retraining algorithm.

We begin our experiments with three widely-used bench-
mark datasets: CIFAR-10, FEMNIST and Purchase-100. Our
results over these datasets are shown in Figs. 5a to 5c, respec-
tively. From these results, we can make a number of important
observations. First, with client heterogeneity, FedBuff outper-
formed synchronous FedAvg by a very substantial margin.
When training with the CIFAR-10 dataset, for example, to
reach an accuracy of 75%, it took FedAvg 4426 seconds and
FedBuff 2036 seconds only, reflecting an improvement of 54%.
Second, random clustered aggregation — which serves as the
foundation for KNOT — performed exceptionally well. With
our three datasets, it outperformed FedBuff by 73%, 45%, and
61%, respectively.

Last but not least, thanks to optimized client-cluster as-
signments, KNOT enjoyed a minor performance advantage
over random clustered aggregation, as it outperformed FedBuff
by 85%, 52%, and 64%, respectively, over our datasets. In

addition, we observed that it took KNOT a negligible overhead
of less than a second to solve its optimization problem using
Mosek 9, which is an off-the-shelf LP solver. This has
clearly shown the benefits of transforming our lexicographical
minimization problem to an equivalent linear programming
problem, and solving the latter to optimality.

Real-world performance with the GPT-2 model. In order
to evaluate the performance of KNOT when training a much
larger model in a real-world language modeling task, we used
a common dataset, Tiny Shakespeare, which has 40,000 lines
of Shakespeare from a variety of Shakespeare’s plays. We
train a distilled variant of the celebrated GPT-2 model, which
is a transformer from the HuggingFace framework [25]. Our
results have been shown in Fig. 6a. Again, we observed that
KNOT was able to outperform its competitors, achieving a
33% faster wall-clock training time compared to FedBuff and
a small but performance advantage over random clustering,
reaching a perplexity of 37.5 (lower perplexities are better in
language modeling tasks).

Comparisons with FedEraser. FedEraser [2] represents
one of the state-of-the-art retraining algorithms that used
approximations, rather than naïve retraining from scratch.
Though it requires less computation during the retraining
process, it may not be considered to be in full compliance with
regulatory policies such as GDPR. As an orthogonal approach,
KNOT can work with FedEraser or any other approximation
algorithm; it is nevertheless interesting to compare FedEraser’s
performance to KNOT with naïve retraining. For this reason,
we conducted more experiments with exactly the same settings
— including random seeds to ensure reproducibility — using
FedEraser, and included our results in Table II. It can be
observed that though FedEraser outperformed the FedBuff
baseline by a small margin in FEMNIST and Purchase-100,
it performed 2% worse (marked by ↓) in CIFAR-10, and
failed to work correctly with the much larger GPT-2 model
(which has not been evaluated in [2]). Overall, even with naïve
retraining, KNOT outperformed FedEraser by 85%, 47%, and
56%, respectively, in our benchmark datasets.

TABLE II
KNOT VS. ITS COMPETITORS: A COMPARISON REGARDING THE

WALL-CLOCK TIMES NEEDED TO CONVERGE TO A TARGET ACCURACY (OR
PERPLEXITY).

Mechanism CIFAR-10 FEMNIST
Purchase-

100
Tiny-

Shakespeare

Accuracy (%) 75 60 63.5 37.5
FedBuff (secs) 2036 4272 2381 16293

FedEraser 2%↓ 10%↑ 19%↑ –
Random 73%↑ 45%↑ 61%↑ 27%↑
KNOT 85%↑ 52%↑ 64%↑ 33%↑

Rapid retraining. In contrast to FedEraser, the rapid re-
training algorithm [7] (labeled as INFOCOM’22), is indeed an
exact retraining algorithm. Unfortunately, we discovered that
its performance was even worse than FedEraser across all of
our datasets: it failed to converge, and could not be included in
Table II as a result. In addition, with the Tiny Shakespeare
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Fig. 5. KNOT vs. its leading competitors over three benchmark datasets.
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Fig. 6. (a) KNOT vs. its leading competitors over a large-scale language modeling task using a distilled GPT-2 model and the Tiny Shakespeare dataset. (b)
Using KNOT with the retraining algorithm in [7]. (c) Speedup comparisons over the synchronous baseline: KNOT vs. its competitors with two clients (four
in the language modeling task) erased.

dataset, rapid retraining required a memory footprint that
was approximately 200% higher than KNOT, while producing
much worse performance as shown in Fig. 6a. Nevertheless,
as it is an exact retraining algorithm, it would be interesting
to combine KNOT with rapid retraining, and evaluate KNOT’s
performance with this new variant. Our results over CIFAR-10,
plotted in Fig. 6b, showed that the use of KNOT substantially
improved the convergence behavior of rapid retraining; yet it
was still much worse than using KNOT with naïve retraining. It
turned out that naïve retraining is not so “naïve” anyway! This
experiment also showed that KNOT is indeed orthogonal to
retraining algorithms, and can be combined with them easily.

Varying the number of clients requesting data erasures.
In order to explore whether the number of clients requesting
data erasures has an effect on KNOT’s performance, we also
designed experiments to erase the data on a varying number
of clients under the same conditions. Fig. 6c shows our results
— with respect to the speedup over the synchronous FedAvg
baseline — with two clients requesting data erasure (rather
than one in our previous experiments), and four clients when
training GPT-2 with the Tiny Shakespeare dataset. It can be
easily observed that KNOT and random clustered aggregation
still performed substantially better than FedEraser, and rapid
retraining failed to converge.

VI. CONCLUDING REMARKS

While existing works on federated unlearning focused on
improving its performance with more efficient retraining algo-
rithms, we sought to take a decidedly different and orthogonal
approach in this paper with the introduction of clustered
aggregation. The efficacy of our approach hinges upon the
intuition that the retraining process can be constrained to
within a cluster only, if server aggregation is only performed
within each cluster, and training sessions in the other clusters
can be carried out asynchronously. As an original highlight of
this paper, we are the first to propose asynchronous federated
unlearning, taking advantage of the well-recognized perfor-
mance benefit of asynchronous FL. KNOT, our optimization-
based clustered aggregation mechanism, pushes the perfor-
mance envelope further by not only formulating the client-
cluster assignment problem as a lexicographical minimization
problem, but also proving that it can be solved efficiently using
a linear program solver. With our scalable and reproducible
implementation, we have shown that the wall-clock training
time with KNOT is up to 85% better than FedEraser, a state-of-
the-art on approximation algorithm, even when retraining from
scratch. Last but not the least, our experiments were designed
to be reproducible, and we have provided public access to
our source code at https://github.com/TL-System/plato/
tree/main/examples/unlearning/knot.

https://github.com/TL-System/plato/tree/main/examples/unlearning/knot
https://github.com/TL-System/plato/tree/main/examples/unlearning/knot


REFERENCES

[1] L. Bourtoule, V. Chandrasekaran, C. A. Choquette-Choo, H. Jia,
A. Travers, B. Zhang, D. Lie, and N. Papernot, “Machine Unlearning,”
in Proc. IEEE Symposium on Security and Privacy (SP), 2021, pp. 141–
159.

[2] G. Liu, X. Ma, Y. Yang, C. Wang, and J. Liu, “FedEraser: Enabling Ef-
ficient Client-Level Data Removal from Federated Learning Models,” in
Proc. IEEE/ACM 29th Int’l Symposium on Quality of Service (IWQoS),
2021, pp. 1–10.

[3] N. Su and B. Li, “How Asynchronous can Federated Learning Be?” in
Proc. IEEE/ACM 30th Int’l Symposium on Quality of Service (IWQoS),
2022.

[4] J. Nguyen, K. Malik, H. Zhan, A. Yousefpour, M. Rabbat, M. Malek,
and D. Huba, “Federated Learning with Buffered Asynchronous Aggre-
gation,” in Proc. Int’l Conference on Machine Learning (ICML), 2021.

[5] H. Wang, Z. Kaplan, D. Niu, and B. Li, “Optimizing Federated Learning
on Non-IID data with Reinforcement Learning,” in Proc. IEEE Confer-
ence on Computer Communications (INFOCOM), 2020, pp. 1698–1707.

[6] R. R. Meyer, “A Class of Nonlinear Integer Programs Solvable by a
Single Linear Program,” SIAM Journal on Control and Optimization,
vol. 15, no. 6, pp. 935–946, 1977.

[7] Y. Liu, L. Xu, X. Yuan, C. Wang, and B. Li, “The Right to be Forgotten
in Federated Learning: An Efficient Realization with Rapid Retraining,”
in Proc. IEEE Conference on Computer Communications (INFOCOM),
2022.

[8] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-Efficient Learning of Deep Networks from Decentral-
ized Data,” in Proc. 20th Int’l Conference on Artificial Intelligence and
Statistics (AISTATS), vol. 54, April 2017, pp. 1273–1282.

[9] C. Xie, S. Koyejo, and I. Gupta, “Asynchronous Federated Optimiza-
tion,” in Proc. NeurIPS Workshop on Optimization for Machine Learning
(OPT), 2020.

[10] Y. Cao and J. Yang, “Towards Making Systems Forget with Machine
Unlearning,” in Proc. IEEE Symposium on Security and Privacy, 2015,
pp. 463–480.

[11] A. Golatkar, A. Achille, and S. Soatto, “Eternal Sunshine of the Spotless
Net: Selective Forgetting in Deep Networks,” in Proc. IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2020,
pp. 9304–9312.

[12] ——, “Forgetting Outside the Box: Scrubbing Deep Networks of Infor-
mation Accessible from Input-Output Observations,” in Proc. European
Conference on Computer Vision (ECCV), 2020, pp. 383–398.

[13] Z. Izzo, M. A. Smart, K. Chaudhuri, and J. Zou, “Approximate Data
Deletion from Machine Learning Models,” in Proc. 24th Int’l Conference
on Artificial Intelligence and Statistics (AISTATS), 2021, pp. 2008–2016.

[14] S. Neel, A. Roth, and S. Sharifi-Malvajerdi, “Descent-to-Delete:
Gradient-Based Methods for Machine Unlearning,” in Proc. 32nd Int’l
Conference on Algorithmic Learning Theory, 2021, pp. 931–962.

[15] C. Guo, T. Goldstein, A. Hannun, and L. Van Der Maaten, “Cer-
tified data removal from machine learning models,” arXiv preprint
arXiv:1911.03030, 2019.

[16] A. Ginart, M. Guan, G. Valiant, and J. Zou, “Making AI Forget You:
Data Deletion in Machine Learning,” Advances in Neural Information
Processing Systems (NeurIPS 2019), 2019.

[17] J. Brophy and D. Lowd, “Machine Unlearning for Random Forests,” in
Proc. Int’l Conference on Machine Learning (ICML), 2021, pp. 1092–
1104.

[18] C. Wu, S. Zhu, and P. Mitra, “Federated Unlearning with Knowledge
Distillation,” arXiv preprint arXiv:2201.09441, 2022.

[19] J. Wang, S. Guo, X. Xie, and H. Qi, “Federated Unlearning via Class-
Discriminative Pruning,” in Proc. ACM Web Conference (WWW), 2022,
pp. 622–632.

[20] Z. Yao, A. Gholami, S. Shen, M. Mustafa, K. Keutzer, and M. Mahoney,
“ADAHESSIAN: An Adaptive Second Order Optimizer for Machine
Learning,” in Proc. AAAI Conference on Artificial Intelligence (AAAI),
vol. 35, no. 12, 2021, pp. 10 665–10 673.

[21] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-Based
Learning applied to Document Recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[22] A. Krizhevsky, “Learning Multiple Layers of Features from Tiny
Images,” University of Toronto, Tech. Rep., 2009. [Online]. Available:
https://www.cs.toronto.edu/~kriz/cifar.html

[23] S. Caldas, S. M. K. Duddu, P. Wu, T. Li, J. Konečnỳ, H. B. McMahan,
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