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Policy and regulation constraints such 
as GDPR required users to have “the 
right to erasure” — to erase effects of 

private data from a trained model



Machine Unlearning
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Fig. 2. The primary goal of the machine unlearning process is to produce
a new neural network model with the erased data unlearned, equivalent to a
model initialized and then trained without using the erased data.

was proposed by Cao et al. [10], which was asymptotically
faster than retraining from scratch by transforming learning
algorithms into a summation form. Subsequent works in the
literature focused on approximating the model after unlearning
the erased data [11]–[14], sometimes with theoretical guaran-
tees that an adversary cannot extract information about the
erased data [15]. Towards the objective of reducing the over-
head of retraining, Ginart et al. [16] proposed two clustering
algorithms to divide data into clusters, whereas other similar
mechanisms were proposed more recently [1], [17].

Federated unlearning. The vanilla machine unlearning
process may be applied in the context of federated learning,
which is referred to as federated unlearning in the literature.
As clients will not share their private data with the server,
the federated unlearning process can only be performed on
the clients. In addition, as the server aggregates client updates
across multiple communication rounds, the effects of data from
one client will eventually propagate to models trained by all
the participating clients. When any data needs to be erased,
all the clients may need to retrain from scratch over a time-
consuming retraining process. In response to this challenge,
FedEraser [2] designed an approximation algorithm to im-
prove the efficiency of such a retraining process. Alternative
approximation algorithms have been proposed more recently,
using knowledge distillation [18] or class-discriminative prun-
ing [19]. A common technique to evaluate the effectiveness
of these approximation algorithms was to use membership
inference attacks to show that any remaining contributions of
the erased data cannot be detected by the attackers.

However, these existing approximation mechanisms may
have violated regulatory policies such as GDPR, which stipu-
lates that any effects of data must be erased completely without
a trace. In response, Liu et al. [7] proposed to improve the
efficiency of the retraining phase, which may be the only law-
compliant way to properly perform federated unlearning. It
used the second-order AdaHessian optimizer [20] to speed
up the retraining process. However, it was still retraining
from scratch without any further optimization in the federated
unlearning process. In this paper, we proposed an orthogonal
mechanism such that an optimized unlearning process, custom-
tailored for federated learning, can be carried out.

III. RANDOM CLUSTERED AGGREGATION:
DESIGN AND EMPIRICAL OBSERVATIONS

The ultimate objective in federated unlearning is to erase
the effects of one or more pre-specified data samples from
a trained model. Through rounds of model propagation and
redistribution, the influence of a client’s local data samples
will continuously affect the other clients that the server selects
in the future rounds. As such effects ripple throughout the
system, the only way to erase all the effects of any of the
local data samples from client A is to retrain from scratch.
However, the computation costs of retraining from scratch on

all affected clients are prohibitively high during such a vanilla
federated unlearning process.

Random clustered aggregation: an orthogonal approach

to retraining algorithms. In the specific scenario of asyn-
chronous FL, faster clients tend to go through more rounds of
communication as their updates are aggregated and selected
more frequently than slower clients. It has been clearly shown
that when clients are heterogeneous in their training speeds,
asynchronous FL outperforms synchronous FL by a substantial
margin. Yet, the effects of local data samples from faster
clients tend to propagate more quickly than slower clients as
well, which makes federated unlearning more complex and
challenging. To our best knowledge, potential mechanisms of
mitigating the exorbitant costs of retraining from scratch in
the context of asynchronous FL have not yet been explored in
the literature.
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Fig. 3. An example of asynchronous clustered aggregation where four clients
have been assigned to two clusters. If client #4 requests to erase the effects of
its data from the server, only clients in cluster #2 need to be retrained, while
clients in cluster #1 may proceed normally with their FL training process.

In contrast to existing work that sought to replace the naïve
mechanism of retraining from scratch with approximation
algorithms (e.g., [2]), we propose to take a decidedly different
approach that is orthogonal to approximation algorithms. Intu-
itively, if we can reduce the ripple effect of contributions from
any particular client in the FL training process, the number of
clients that must participate in the retraining process will be
substantially reduced. With all existing works in the literature,
as soon as a client’s contributions have propagated throughout
the entire pool of participating clients, all clients will need to
participate in the retraining process when federated unlearning
commences.
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is to divide all clients into a small number of clusters, and
aggregate client updates within the confines of each cluster
only. The immediate effect of such clustered aggregation is
that, if any client requests its data samples to be erased, only
clients within the same cluster need to be retrained, while other
unaffected clusters may continue with normal FL training.

In this paper, we introduce the new paradigm of asyn-

chronous federated unlearning, and propose KNOT, our new
federated unlearning mechanism that uses clustering to miti-
gate the negative effects of unlearning. But how should clients
be assigned to each of the clusters? In asynchronous FL,
fast clients are known to contribute more to the training
process; as such, the local training speed of each client should
be considered, and fast clients should be assigned to the
same clusters. On the other hand, due to the inherent non-
i.i.d. data heterogeneity in federated learning, model updates
from different clients are known to be naturally clustered [5]
with respect to their similarity to one another. Thus, one may
consider assigning clients with similar model updates to the
same clusters as well.

The main contribution of this paper is to transfer such an
intricate problem of assigning clients to clusters to a solvable
optimization problem. With a precise definition of a pair-
wise match rating between clients and pre-determined clusters,
the problem of minimizing the wall-clock time to process
retraining is equivalent to minimizing the match ratings of
all clients, which we further formulate as an integer lexico-
graphical minimization problem. With empirical evidence, we
show that solving such an optimization problem offers superior
performance than simply clustering the clients randomly.

However, solving integer optimization problems at any scale
in an online fashion is likely to be impractical. As a highlight
of this paper, our analysis shows that our lexicographical min-
imization problem has a separable convex objective function
and a totally unimodular constraint matrix, and can thus be
solved directly using an off-the-shelf linear program solver
[6].

Highlights of our original contributions in this paper are
as follows. First, to our best knowledge, we are the first to
consider federated unlearning in the asynchronous FL setting.
Second, we proposed KNOT, a new federated unlearning
mechanism that is designed to mitigate the retraining overhead
by assigning clients to clusters, and performing aggregation
within each cluster only. Third, we addressed the key challenge
of assigning clients to clusters by formulating it as an integer
lexicographical minimization problem, and our theoretical
analyses show that such a problem can be efficiently solved
using a linear program solver. Finally, we implemented KNOT,
as well as the state-of-the-art mechanisms in the literature,
in a scalable framework for FL research, and evaluated its
performance with a variety of image classification and lan-
guage modeling tasks. We show that KNOT has substantially
outperformed the state-of-the-art [2], [7] with respect to the
wall-clock time for converging to a target accuracy in the
federated unlearning process.
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Fig. 1. In asynchronous FL, clients spend different amounts of time for
training and communication, and the server only needs to wait for a subset
of clients to report back.

II. PRELIMINARIES AND RELATED WORK

As an emerging distributed machine learning paradigm,
federated learning (FL) keeps private data at the clients to
protect their privacy [8]. In each communication round, the
server sends the initial model to a selected subset of clients,
and clients use their local data to train the received model
and send updates back to the server. The server then uses an
aggregation algorithm to aggregate all received updates into a
new model, in preparation for the next communication round.

Asynchronous federated learning. In practice, clients have
different computing power and communication capabilities,
leading to different amounts of time for them to finish training.
In order to speed up the FL training session, asynchronous
aggregation on the server has recently been proposed [4], [9].
The gist of asynchronous aggregation is simple: the server only
needs to wait for a minimum number of faster clients before
aggregation proceeds. For example, in Fig. 1, the slowest
client, #4, is not waited for by an asynchronous server before
aggregation, which may speed up the overall convergence.

Asynchronous FL naturally favors faster clients in each
communication round, who contribute more to the conver-
gence of the global model in the training session. The disad-
vantage of asynchronous aggregation, however, is that slower
clients will inevitably be training based on models that are out-
of-date and stale, and as their updates are used for aggregation,
the accuracy of the aggregated model can be negatively
affected. Still, it has been shown [3], [4] that the benefits of
asynchronous aggregation outweigh its shortcomings and that
the overall wall-clock time it takes to converge is substantially
improved over synchronous aggregation.

Machine unlearning. With the recent emergence of regu-
latory policies that require corporations to provide the right to
erase private data from users, machine unlearning has garnered
increasing research attention. As illustrated in Fig. 2, with
the machine unlearning process, a new neural network model
should be produced by unlearning all the effects of any private
data that are requested to be erased. Existing research on
machine unlearning aims to produce the unlearned model
with the highest possible efficiency, without taking the naïve
approach of retraining an initial model from scratch.

Towards the goal of making the machine unlearning pro-
cess more efficient, the first machine unlearning mechanism
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Fig. 2. The primary goal of the machine unlearning process is to produce
a new neural network model with the erased data unlearned, equivalent to a
model initialized and then trained without using the erased data.

was proposed by Cao et al. [10], which was asymptotically
faster than retraining from scratch by transforming learning
algorithms into a summation form. Subsequent works in the
literature focused on approximating the model after unlearning
the erased data [11]–[14], sometimes with theoretical guaran-
tees that an adversary cannot extract information about the
erased data [15]. Towards the objective of reducing the over-
head of retraining, Ginart et al. [16] proposed two clustering
algorithms to divide data into clusters, whereas other similar
mechanisms were proposed more recently [1], [17].

Federated unlearning. The vanilla machine unlearning
process may be applied in the context of federated learning,
which is referred to as federated unlearning in the literature.
As clients will not share their private data with the server,
the federated unlearning process can only be performed on
the clients. In addition, as the server aggregates client updates
across multiple communication rounds, the effects of data from
one client will eventually propagate to models trained by all
the participating clients. When any data needs to be erased,
all the clients may need to retrain from scratch over a time-
consuming retraining process. In response to this challenge,
FedEraser [2] designed an approximation algorithm to im-
prove the efficiency of such a retraining process. Alternative
approximation algorithms have been proposed more recently,
using knowledge distillation [18] or class-discriminative prun-
ing [19]. A common technique to evaluate the effectiveness
of these approximation algorithms was to use membership
inference attacks to show that any remaining contributions of
the erased data cannot be detected by the attackers.

However, these existing approximation mechanisms may
have violated regulatory policies such as GDPR, which stipu-
lates that any effects of data must be erased completely without
a trace. In response, Liu et al. [7] proposed to improve the
efficiency of the retraining phase, which may be the only law-
compliant way to properly perform federated unlearning. It
used the second-order AdaHessian optimizer [20] to speed
up the retraining process. However, it was still retraining
from scratch without any further optimization in the federated
unlearning process. In this paper, we proposed an orthogonal
mechanism such that an optimized unlearning process, custom-
tailored for federated learning, can be carried out.

III. RANDOM CLUSTERED AGGREGATION:
DESIGN AND EMPIRICAL OBSERVATIONS

The ultimate objective in federated unlearning is to erase
the effects of one or more pre-specified data samples from
a trained model. Through rounds of model propagation and
redistribution, the influence of a client’s local data samples
will continuously affect the other clients that the server selects
in the future rounds. As such effects ripple throughout the
system, the only way to erase all the effects of any of the
local data samples from client A is to retrain from scratch.
However, the computation costs of retraining from scratch on

all affected clients are prohibitively high during such a vanilla
federated unlearning process.

Random clustered aggregation: an orthogonal approach

to retraining algorithms. In the specific scenario of asyn-
chronous FL, faster clients tend to go through more rounds of
communication as their updates are aggregated and selected
more frequently than slower clients. It has been clearly shown
that when clients are heterogeneous in their training speeds,
asynchronous FL outperforms synchronous FL by a substantial
margin. Yet, the effects of local data samples from faster
clients tend to propagate more quickly than slower clients as
well, which makes federated unlearning more complex and
challenging. To our best knowledge, potential mechanisms of
mitigating the exorbitant costs of retraining from scratch in
the context of asynchronous FL have not yet been explored in
the literature.
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Fig. 3. An example of asynchronous clustered aggregation where four clients
have been assigned to two clusters. If client #4 requests to erase the effects of
its data from the server, only clients in cluster #2 need to be retrained, while
clients in cluster #1 may proceed normally with their FL training process.

In contrast to existing work that sought to replace the naïve
mechanism of retraining from scratch with approximation
algorithms (e.g., [2]), we propose to take a decidedly different
approach that is orthogonal to approximation algorithms. Intu-
itively, if we can reduce the ripple effect of contributions from
any particular client in the FL training process, the number of
clients that must participate in the retraining process will be
substantially reduced. With all existing works in the literature,
as soon as a client’s contributions have propagated throughout
the entire pool of participating clients, all clients will need to
participate in the retraining process when federated unlearning
commences.



Instead, we propose to construct a “firewall” between clus-

ters of clients in the system, such that server aggregation is
carried out within each cluster only. With such a mechanism,
which we refer to as clustered aggregation, the ripple effect
of one client’s contributions will only affect other clients
in the same cluster, and clients outside the cluster will no
longer need to be retrained. Fig. 3 shows how clients can be
clustered and how the server aggregates the updates within
each cluster only. It is worth noting that our new mechanism
of clustered aggregation is orthogonal to any innovations in the
retraining mechanism: it is complementary to both the naïve
mechanism of retraining from scratch and all its alternatives
using approximation algorithms.

The need for asynchrony. It turns out, however, that po-
tential benefits from such a clustered aggregation mechanism
come with a caveat: it only works effectively in the specific
context of asynchronous FL, where client contributions are
aggregated asynchronously without waiting for the slower
clients. In the event that clients within one of the clusters
need to roll back to a previous round and start their federated
unlearning process, all the clients within the other clusters can
proceed with their federated learning process normally. This
phenomenon, where some clusters move forward in time while
some other clusters roll back at the same time, is only feasible
with asynchronous FL.

Criteria for terminating the training session. When is
the right time for clustered aggregation to terminate, and
for the server to begin aggregating across the clusters? In
our random clustered aggregation mechanism, we consider
two thresholds: one for the required validation accuracy, and
one for the standard deviation across a recent history of
such validation accuracies. As long as the highest validation
accuracy across clusters is higher than the first threshold, and
the standard deviation of recent accuracies is lower than the
second, the training session will terminate, and the server
will then perform its final round of aggregation to produce
converged global model. Due to non-i.i.d. data distributions
across the clients’ local data, such an aggregation process
is inevitably less efficient with respect to converging to the
best possible accuracy as quickly as we can. It is therefore
critically important to design a suitable clustering algorithm
to minimize such a drag on training efficiency in a federated
learning session, which we will soon elaborate in great detail
in the next section.

Proof-of-concept experimental evaluations. Though suit-
able strategies for distributing clients across clusters are open
to further investigation, we wish to first conduct some pre-
liminary experiments to verify that clustered aggregation can
indeed improve training performance in asynchronous FL,
with some of the clients erasing their data. For the sake of
simplicity, though random clustered aggregation can work with
any retraining algorithm, we retrain from scratch when clients
request erasing their data.

In our proof-of-concept experiments, we use the MNIST
dataset to train the LeNet-5 model, with 100 clients to be
randomly assigned to 5 clusters. We select 30 clients in

each communication round, and 15 clients as the minimum
number of clients to be aggregated asynchronously. The data
distribution of local datasets is non-i.i.d., sampled with the
symmetric Dirichlet distribution with a concentration of 5.
To simulate the heterogeneity across clients, we use a heavy-
tailed Pareto distribution to simulate the asynchronous clients’
training time, with its positive parameter ↵ = 1.

Data erased at 130s

Fig. 4. A comparison study between synchronous FL baseline, asynchronous
FL baseline, and random clustered aggregation using the MNIST [21] dataset,
with full retraining from scratch after data erasure.

With 5 clusters, we proceed to compare the training per-
formance of random clustered aggregation with two baseline
algorithms: FedBuff [4] as our asynchronous FL baseline, and
Federated Averaging (FedAvg) [8] as our synchronous base-
line. Our results have been shown in Fig. 4, where we shaded
the range of validation accuracies within each of the clusters.
From these results, we confirmed the fact that synchronous
FL with FedAvg was much slower than asynchronous FL
with FedBuff before clients request to erase their data at
the same wall-clock time (around 140 seconds). Once data
erasure occurred, we observed a substantial reduction in global
validation accuracy with the asynchronous FL baseline. This
clearly showed the ripple effect of the erased data, in that all
affected clients needed to be retrained from scratch.

In stark contrast to both synchronous and asynchronous
baselines, only validation accuracies of some clusters expe-
rienced a substantial reduction with random clustered aggre-
gation, while other clusters could be allowed to continue with
their training process normally. As a result, global accuracies
were not affected until convergence. After the criteria for
terminating the training session is satisfied, the server produces
the global model in the final round, which occurred at 360
seconds with a final accuracy of 90%, and outperformed both
baselines. Further evaluations have shown that the number of
clusters had no material effects on the training performance;
therefore, we will continue to use 5 clusters in our later
experiments in Section V.

IV. KNOT: ALGORITHM AND ANALYSIS

Our preliminary experiments in Section III have clearly
shown the effectiveness of our proposed clustered aggregation
mechanism with respect to expediting the retraining process
in the context of asynchronous FL. How clients are to be

 FedBuff
FedAvg

J. Nguyen, et al., “Federated Learning with Buffered Asynchronous Aggregation,” Int’l Conference on Machine Learning (ICML), 2021. 
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x11 = 1
<latexit sha1_base64="Ekj1VbpYrYp264JI4Dawcr+p9X0=">AAAB83icdVDLSsNAFL2pr1pfVZduBlvBVUiCj3YhFN24rGBboQ1lMp20QyeTMDMRS+hvuHGhiFt/xp1/4/Qh+Dxw4XDOvdx7T5BwprTjvFu5hcWl5ZX8amFtfWNzq7i901RxKgltkJjH8ibAinImaEMzzelNIimOAk5bwfBi4rduqVQsFtd6lFA/wn3BQkawNlKnfNfNXG+MzpBT7hZLjl31jirVKvpNXNuZogRz1LvFt04vJmlEhSYcK9V2nUT7GZaaEU7HhU6qaILJEPdp21CBI6r8bHrzGB0YpYfCWJoSGk3VrxMZjpQaRYHpjLAeqJ/eRPzLa6c6rPgZE0mqqSCzRWHKkY7RJADUY5ISzUeGYCKZuRWRAZaYaBNTwYTw+Sn6nzQ92z2xj6+8Uu18Hkce9mAfDsGFU6jBJdShAQQSuIdHeLJS68F6tl5mrTlrPrML32C9fgBWnJCc</latexit>

x12 = 0 <latexit sha1_base64="yUhg5OnbohkHc3Hy8GKCkhLBvX0=">AAAB83icdVDLSsNAFL2pr1pfVZduBlvBVUiCj3YhFN24rGBboQ1lMp20QyeTMDMRS+hvuHGhiFt/xp1/4/Qh+Dxw4XDOvdx7T5BwprTjvFu5hcWl5ZX8amFtfWNzq7i901RxKgltkJjH8ibAinImaEMzzelNIimOAk5bwfBi4rduqVQsFtd6lFA/wn3BQkawNlKnfNfNPG+MzpBb7hZLjl31jirVKvpNXNuZogRz1LvFt04vJmlEhSYcK9V2nUT7GZaaEU7HhU6qaILJEPdp21CBI6r8bHrzGB0YpYfCWJoSGk3VrxMZjpQaRYHpjLAeqJ/eRPzLa6c6rPgZE0mqqSCzRWHKkY7RJADUY5ISzUeGYCKZuRWRAZaYaBNTwYTw+Sn6nzQ92z2xj6+8Uu18Hkce9mAfDsGFU6jBJdShAQQSuIdHeLJS68F6tl5mrTlrPrML32C9fgBZrJCe</latexit>

x22 = 1

<latexit sha1_base64="4GzdODaK8KTEJU63Z0nDKHeAM0s=">AAAB83icdVDLSsNAFL2pr1pfVZduBlvBVUiCj3YhFN24rGBboQ1lMp20QyeTMDMRS+hvuHGhiFt/xp1/4/Qh+Dxw4XDOvdx7T5BwprTjvFu5hcWl5ZX8amFtfWNzq7i901RxKgltkJjH8ibAinImaEMzzelNIimOAk5bwfBi4rduqVQsFtd6lFA/wn3BQkawNlKnfNfNPHeMzpBb7hZLjl31jirVKvpNXNuZogRz1LvFt04vJmlEhSYcK9V2nUT7GZaaEU7HhU6qaILJEPdp21CBI6r8bHrzGB0YpYfCWJoSGk3VrxMZjpQaRYHpjLAeqJ/eRPzLa6c6rPgZE0mqqSCzRWHKkY7RJADUY5ISzUeGYCKZuRWRAZaYaBNTwYTw+Sn6nzQ92z2xj6+8Uu18Hkce9mAfDsGFU6jBJdShAQQSuIdHeLJS68F6tl5mrTlrPrML32C9fgBYIpCd</latexit>

x21 = 1



<latexit sha1_base64="VrnrpfNmOr7fr9T+t+t9KJnigUg=">AAAEE3iclVNLa9tAEFakPmL35bTHXoaahqQEYcn0RQiE9lIwmBTqJOB1xWq1dhavVqp2VWwW/Yde+ld66aGl9NpLb/03XckOtWOHtgPLDN/sfN/MsBumnEnVav3asJ0rV69d36zVb9y8dftOY+vusUzyjNAeSXiSnYZYUs4E7SmmOD1NM4rjkNOTcPyyzJ+8p5lkiXijpikdxHgk2JARrAwUbNm7KKQjJjTmbCQeFfUaykVkCqjSk0KjGKuzLNacTmImigLQPmzDEA5gJwq05xUwqdweIB4lSu6Bgceigo1bgjvdCjZuF+aGkNFTdKJAg3SVCwWs2jYgmceBFgde8VZ3ixm1YabvgASe0RgmGeYcxoiJqmGCue6so0Kotgb9N7mRkSvF9i+TK4dZpRlXNJ0lGhL4i0Rikai72vcy8V/avqg321L7f/T+WB1REZ0/jaDRbLnP/bbvt2E18NxWZU1rbkdB4yeKEpLHVCjCsZR9r5WqgcaZYoTToo5ySVNMxnhE+yYUOKZyoKs3XcBDg0RgOjZHKKjQxQqNYymncWhulqPIi7kSXJfr52r4bKCZSHNFBZkJDXMOKoHyg0DEMkoUn5oAk4yZXoGc4QwTZX5F3SzhfFK4PDj2Xe+J+/i13zx8MV/HpnXfemDtWJ711Dq0XllHVs8i9gf7k/3F/up8dD4735zvs6v2xrzmnrVkzo/fL8ctOQ==</latexit>

lexmin
x

f = (d11x11, . . . , dknxkn, . . . , dKNxKN )

s.t.
NX

n=1

xkn  c1, 8k 2 K

NX

n=1

xkn � 1, 8k 2 K

KX

k=1

xkn � c2, 8n 2 N

KX

k=1

xkn  c3, 8n 2 N

<latexit sha1_base64="M5IyWchsevNqPNBmN6uIRXvthHQ=">AAAB83icdVDLSsNAFJ34rPVVdelmsAh1E5IUX7uiG5cV7AOaUCbTSTt0MgkzN2IJ/Q03LhRx68+482+cPgSfBy4czrmXe+8JU8E1OM67tbC4tLyyWlgrrm9sbm2XdnabOskUZQ2aiES1Q6KZ4JI1gINg7VQxEoeCtcLh5cRv3TKleSJvYJSyICZ9ySNOCRjJ94HdgYrzinc07pbKjn3uVT2vin8T13amKKM56t3Sm99LaBYzCVQQrTuuk0KQEwWcCjYu+plmKaFD0mcdQyWJmQ7y6c1jfGiUHo4SZUoCnqpfJ3ISaz2KQ9MZExjon95E/MvrZBCdBTmXaQZM0tmiKBMYEjwJAPe4YhTEyBBCFTe3YjogilAwMRVNCJ+f4v9J07PdE/v42ivXLuZxFNA+OkAV5KJTVENXqI4aiKIU3aNH9GRl1oP1bL3MWhes+cwe+gbr9QMKNZG0</latexit>

(2)

<latexit sha1_base64="6op6QQdKjSgMA/85JyPnQLZZtKg=">AAAB83icdVDLSsNAFJ34rPVVdelmsAh1E5IUX7uiG5cV7AOaUCbTSTt0JgkzN2IJ/Q03LhRx68+482+cPgSfBy4czrmXe+8JU8E1OM67tbC4tLyyWlgrrm9sbm2XdnabOskUZQ2aiES1Q6KZ4DFrAAfB2qliRIaCtcLh5cRv3TKleRLfwChlgST9mEecEjCS7wO7AyXzSvVo3C2VHfvcq3peFf8mru1MUUZz1LulN7+X0EyyGKggWndcJ4UgJwo4FWxc9DPNUkKHpM86hsZEMh3k05vH+NAoPRwlylQMeKp+nciJ1HokQ9MpCQz0T28i/uV1MojOgpzHaQYsprNFUSYwJHgSAO5xxSiIkSGEKm5uxXRAFKFgYiqaED4/xf+Tpme7J/bxtVeuXczjKKB9dIAqyEWnqIauUB01EEUpukeP6MnKrAfr2XqZtS5Y85k99A3W6wcLu5G1</latexit>

(3)

<latexit sha1_base64="6IymBqqJUN4FT+f7i3sh79pTwzA=">AAAB83icdVDJSgNBEO2JW4xb1KOXxiDEyzCZuN6CXjxGMAtkhtDT6UmadM8M3TViGPIbXjwo4tWf8ebf2FkE1wcFj/eqqKoXJIJrcJx3K7ewuLS8kl8trK1vbG4Vt3eaOk4VZQ0ai1i1A6KZ4BFrAAfB2oliRAaCtYLh5cRv3TKleRzdwChhviT9iIecEjCS5wG7AyWz8tHhuFssOfa5W3XdKv5NKrYzRQnNUe8W37xeTFPJIqCCaN2pOAn4GVHAqWDjgpdqlhA6JH3WMTQikmk/m948xgdG6eEwVqYiwFP160RGpNYjGZhOSWCgf3oT8S+vk0J45mc8SlJgEZ0tClOBIcaTAHCPK0ZBjAwhVHFzK6YDoggFE1PBhPD5Kf6fNF27cmIfX7ul2sU8jjzaQ/uojCroFNXQFaqjBqIoQffoET1ZqfVgPVsvs9acNZ/ZRd9gvX4ADUGRtg==</latexit>

(4)

<latexit sha1_base64="ffKHFlwa0b94d4guyI0Qzf25g00=">AAAB83icdVDJSgNBEO2JW4xb1KOXxiDEyzCZEJdb0IvHCGaBzBB6Oj1Jk56eobtGDEN+w4sHRbz6M978GzuL4Pqg4PFeFVX1gkRwDY7zbuWWlldW1/LrhY3Nre2d4u5eS8epoqxJYxGrTkA0E1yyJnAQrJMoRqJAsHYwupz67VumNI/lDYwT5kdkIHnIKQEjeR6wO1BRVq4dT3rFkmOfu1XXreLfpGI7M5TQAo1e8c3rxzSNmAQqiNbdipOAnxEFnAo2KXipZgmhIzJgXUMliZj2s9nNE3xklD4OY2VKAp6pXycyEmk9jgLTGREY6p/eVPzL66YQnvkZl0kKTNL5ojAVGGI8DQD3uWIUxNgQQhU3t2I6JIpQMDEVTAifn+L/Scu1Kyd27dot1S8WceTRATpEZVRBp6iOrlADNRFFCbpHj+jJSq0H69l6mbfmrMXMPvoG6/UDDseRtw==</latexit>

(5)



<latexit sha1_base64="VrnrpfNmOr7fr9T+t+t9KJnigUg=">AAAEE3iclVNLa9tAEFakPmL35bTHXoaahqQEYcn0RQiE9lIwmBTqJOB1xWq1dhavVqp2VWwW/Yde+ld66aGl9NpLb/03XckOtWOHtgPLDN/sfN/MsBumnEnVav3asJ0rV69d36zVb9y8dftOY+vusUzyjNAeSXiSnYZYUs4E7SmmOD1NM4rjkNOTcPyyzJ+8p5lkiXijpikdxHgk2JARrAwUbNm7KKQjJjTmbCQeFfUaykVkCqjSk0KjGKuzLNacTmImigLQPmzDEA5gJwq05xUwqdweIB4lSu6Bgceigo1bgjvdCjZuF+aGkNFTdKJAg3SVCwWs2jYgmceBFgde8VZ3ixm1YabvgASe0RgmGeYcxoiJqmGCue6so0Kotgb9N7mRkSvF9i+TK4dZpRlXNJ0lGhL4i0Rikai72vcy8V/avqg321L7f/T+WB1REZ0/jaDRbLnP/bbvt2E18NxWZU1rbkdB4yeKEpLHVCjCsZR9r5WqgcaZYoTToo5ySVNMxnhE+yYUOKZyoKs3XcBDg0RgOjZHKKjQxQqNYymncWhulqPIi7kSXJfr52r4bKCZSHNFBZkJDXMOKoHyg0DEMkoUn5oAk4yZXoGc4QwTZX5F3SzhfFK4PDj2Xe+J+/i13zx8MV/HpnXfemDtWJ711Dq0XllHVs8i9gf7k/3F/up8dD4735zvs6v2xrzmnrVkzo/fL8ctOQ==</latexit>

lexmin
x

f = (d11x11, . . . , dknxkn, . . . , dKNxKN )

s.t.
NX

n=1

xkn  c1, 8k 2 K

NX

n=1

xkn � 1, 8k 2 K

KX

k=1

xkn � c2, 8n 2 N

KX

k=1

xkn  c3, 8n 2 N

# of clusters a client belongs to

<latexit sha1_base64="M5IyWchsevNqPNBmN6uIRXvthHQ=">AAAB83icdVDLSsNAFJ34rPVVdelmsAh1E5IUX7uiG5cV7AOaUCbTSTt0MgkzN2IJ/Q03LhRx68+482+cPgSfBy4czrmXe+8JU8E1OM67tbC4tLyyWlgrrm9sbm2XdnabOskUZQ2aiES1Q6KZ4JI1gINg7VQxEoeCtcLh5cRv3TKleSJvYJSyICZ9ySNOCRjJ94HdgYrzinc07pbKjn3uVT2vin8T13amKKM56t3Sm99LaBYzCVQQrTuuk0KQEwWcCjYu+plmKaFD0mcdQyWJmQ7y6c1jfGiUHo4SZUoCnqpfJ3ISaz2KQ9MZExjon95E/MvrZBCdBTmXaQZM0tmiKBMYEjwJAPe4YhTEyBBCFTe3YjogilAwMRVNCJ+f4v9J07PdE/v42ivXLuZxFNA+OkAV5KJTVENXqI4aiKIU3aNH9GRl1oP1bL3MWhes+cwe+gbr9QMKNZG0</latexit>

(2)

<latexit sha1_base64="6op6QQdKjSgMA/85JyPnQLZZtKg=">AAAB83icdVDLSsNAFJ34rPVVdelmsAh1E5IUX7uiG5cV7AOaUCbTSTt0JgkzN2IJ/Q03LhRx68+482+cPgSfBy4czrmXe+8JU8E1OM67tbC4tLyyWlgrrm9sbm2XdnabOskUZQ2aiES1Q6KZ4DFrAAfB2qliRIaCtcLh5cRv3TKleRLfwChlgST9mEecEjCS7wO7AyXzSvVo3C2VHfvcq3peFf8mru1MUUZz1LulN7+X0EyyGKggWndcJ4UgJwo4FWxc9DPNUkKHpM86hsZEMh3k05vH+NAoPRwlylQMeKp+nciJ1HokQ9MpCQz0T28i/uV1MojOgpzHaQYsprNFUSYwJHgSAO5xxSiIkSGEKm5uxXRAFKFgYiqaED4/xf+Tpme7J/bxtVeuXczjKKB9dIAqyEWnqIauUB01EEUpukeP6MnKrAfr2XqZtS5Y85k99A3W6wcLu5G1</latexit>

(3)

<latexit sha1_base64="6IymBqqJUN4FT+f7i3sh79pTwzA=">AAAB83icdVDJSgNBEO2JW4xb1KOXxiDEyzCZuN6CXjxGMAtkhtDT6UmadM8M3TViGPIbXjwo4tWf8ebf2FkE1wcFj/eqqKoXJIJrcJx3K7ewuLS8kl8trK1vbG4Vt3eaOk4VZQ0ai1i1A6KZ4BFrAAfB2oliRAaCtYLh5cRv3TKleRzdwChhviT9iIecEjCS5wG7AyWz8tHhuFssOfa5W3XdKv5NKrYzRQnNUe8W37xeTFPJIqCCaN2pOAn4GVHAqWDjgpdqlhA6JH3WMTQikmk/m948xgdG6eEwVqYiwFP160RGpNYjGZhOSWCgf3oT8S+vk0J45mc8SlJgEZ0tClOBIcaTAHCPK0ZBjAwhVHFzK6YDoggFE1PBhPD5Kf6fNF27cmIfX7ul2sU8jjzaQ/uojCroFNXQFaqjBqIoQffoET1ZqfVgPVsvs9acNZ/ZRd9gvX4ADUGRtg==</latexit>

(4)

<latexit sha1_base64="ffKHFlwa0b94d4guyI0Qzf25g00=">AAAB83icdVDJSgNBEO2JW4xb1KOXxiDEyzCZEJdb0IvHCGaBzBB6Oj1Jk56eobtGDEN+w4sHRbz6M978GzuL4Pqg4PFeFVX1gkRwDY7zbuWWlldW1/LrhY3Nre2d4u5eS8epoqxJYxGrTkA0E1yyJnAQrJMoRqJAsHYwupz67VumNI/lDYwT5kdkIHnIKQEjeR6wO1BRVq4dT3rFkmOfu1XXreLfpGI7M5TQAo1e8c3rxzSNmAQqiNbdipOAnxEFnAo2KXipZgmhIzJgXUMliZj2s9nNE3xklD4OY2VKAp6pXycyEmk9jgLTGREY6p/eVPzL66YQnvkZl0kKTNL5ojAVGGI8DQD3uWIUxNgQQhU3t2I6JIpQMDEVTAifn+L/Scu1Kyd27dot1S8WceTRATpEZVRBp6iOrlADNRFFCbpHj+jJSq0H69l6mbfmrMXMPvoG6/UDDseRtw==</latexit>

(5)



<latexit sha1_base64="VrnrpfNmOr7fr9T+t+t9KJnigUg=">AAAEE3iclVNLa9tAEFakPmL35bTHXoaahqQEYcn0RQiE9lIwmBTqJOB1xWq1dhavVqp2VWwW/Yde+ld66aGl9NpLb/03XckOtWOHtgPLDN/sfN/MsBumnEnVav3asJ0rV69d36zVb9y8dftOY+vusUzyjNAeSXiSnYZYUs4E7SmmOD1NM4rjkNOTcPyyzJ+8p5lkiXijpikdxHgk2JARrAwUbNm7KKQjJjTmbCQeFfUaykVkCqjSk0KjGKuzLNacTmImigLQPmzDEA5gJwq05xUwqdweIB4lSu6Bgceigo1bgjvdCjZuF+aGkNFTdKJAg3SVCwWs2jYgmceBFgde8VZ3ixm1YabvgASe0RgmGeYcxoiJqmGCue6so0Kotgb9N7mRkSvF9i+TK4dZpRlXNJ0lGhL4i0Rikai72vcy8V/avqg321L7f/T+WB1REZ0/jaDRbLnP/bbvt2E18NxWZU1rbkdB4yeKEpLHVCjCsZR9r5WqgcaZYoTToo5ySVNMxnhE+yYUOKZyoKs3XcBDg0RgOjZHKKjQxQqNYymncWhulqPIi7kSXJfr52r4bKCZSHNFBZkJDXMOKoHyg0DEMkoUn5oAk4yZXoGc4QwTZX5F3SzhfFK4PDj2Xe+J+/i13zx8MV/HpnXfemDtWJ711Dq0XllHVs8i9gf7k/3F/up8dD4735zvs6v2xrzmnrVkzo/fL8ctOQ==</latexit>

lexmin
x

f = (d11x11, . . . , dknxkn, . . . , dKNxKN )

s.t.
NX

n=1

xkn  c1, 8k 2 K

NX

n=1

xkn � 1, 8k 2 K

KX

k=1

xkn � c2, 8n 2 N

KX

k=1

xkn  c3, 8n 2 N

# of clusters a client belongs to

# of clients a cluster can have

<latexit sha1_base64="M5IyWchsevNqPNBmN6uIRXvthHQ=">AAAB83icdVDLSsNAFJ34rPVVdelmsAh1E5IUX7uiG5cV7AOaUCbTSTt0MgkzN2IJ/Q03LhRx68+482+cPgSfBy4czrmXe+8JU8E1OM67tbC4tLyyWlgrrm9sbm2XdnabOskUZQ2aiES1Q6KZ4JI1gINg7VQxEoeCtcLh5cRv3TKleSJvYJSyICZ9ySNOCRjJ94HdgYrzinc07pbKjn3uVT2vin8T13amKKM56t3Sm99LaBYzCVQQrTuuk0KQEwWcCjYu+plmKaFD0mcdQyWJmQ7y6c1jfGiUHo4SZUoCnqpfJ3ISaz2KQ9MZExjon95E/MvrZBCdBTmXaQZM0tmiKBMYEjwJAPe4YhTEyBBCFTe3YjogilAwMRVNCJ+f4v9J07PdE/v42ivXLuZxFNA+OkAV5KJTVENXqI4aiKIU3aNH9GRl1oP1bL3MWhes+cwe+gbr9QMKNZG0</latexit>

(2)

<latexit sha1_base64="6op6QQdKjSgMA/85JyPnQLZZtKg=">AAAB83icdVDLSsNAFJ34rPVVdelmsAh1E5IUX7uiG5cV7AOaUCbTSTt0JgkzN2IJ/Q03LhRx68+482+cPgSfBy4czrmXe+8JU8E1OM67tbC4tLyyWlgrrm9sbm2XdnabOskUZQ2aiES1Q6KZ4DFrAAfB2qliRIaCtcLh5cRv3TKleRLfwChlgST9mEecEjCS7wO7AyXzSvVo3C2VHfvcq3peFf8mru1MUUZz1LulN7+X0EyyGKggWndcJ4UgJwo4FWxc9DPNUkKHpM86hsZEMh3k05vH+NAoPRwlylQMeKp+nciJ1HokQ9MpCQz0T28i/uV1MojOgpzHaQYsprNFUSYwJHgSAO5xxSiIkSGEKm5uxXRAFKFgYiqaED4/xf+Tpme7J/bxtVeuXczjKKB9dIAqyEWnqIauUB01EEUpukeP6MnKrAfr2XqZtS5Y85k99A3W6wcLu5G1</latexit>

(3)

<latexit sha1_base64="6IymBqqJUN4FT+f7i3sh79pTwzA=">AAAB83icdVDJSgNBEO2JW4xb1KOXxiDEyzCZuN6CXjxGMAtkhtDT6UmadM8M3TViGPIbXjwo4tWf8ebf2FkE1wcFj/eqqKoXJIJrcJx3K7ewuLS8kl8trK1vbG4Vt3eaOk4VZQ0ai1i1A6KZ4BFrAAfB2oliRAaCtYLh5cRv3TKleRzdwChhviT9iIecEjCS5wG7AyWz8tHhuFssOfa5W3XdKv5NKrYzRQnNUe8W37xeTFPJIqCCaN2pOAn4GVHAqWDjgpdqlhA6JH3WMTQikmk/m948xgdG6eEwVqYiwFP160RGpNYjGZhOSWCgf3oT8S+vk0J45mc8SlJgEZ0tClOBIcaTAHCPK0ZBjAwhVHFzK6YDoggFE1PBhPD5Kf6fNF27cmIfX7ul2sU8jjzaQ/uojCroFNXQFaqjBqIoQffoET1ZqfVgPVsvs9acNZ/ZRd9gvX4ADUGRtg==</latexit>

(4)

<latexit sha1_base64="ffKHFlwa0b94d4guyI0Qzf25g00=">AAAB83icdVDJSgNBEO2JW4xb1KOXxiDEyzCZEJdb0IvHCGaBzBB6Oj1Jk56eobtGDEN+w4sHRbz6M978GzuL4Pqg4PFeFVX1gkRwDY7zbuWWlldW1/LrhY3Nre2d4u5eS8epoqxJYxGrTkA0E1yyJnAQrJMoRqJAsHYwupz67VumNI/lDYwT5kdkIHnIKQEjeR6wO1BRVq4dT3rFkmOfu1XXreLfpGI7M5TQAo1e8c3rxzSNmAQqiNbdipOAnxEFnAo2KXipZgmhIzJgXUMliZj2s9nNE3xklD4OY2VKAp6pXycyEmk9jgLTGREY6p/eVPzL66YQnvkZl0kKTNL5ojAVGGI8DQD3uWIUxNgQQhU3t2I6JIpQMDEVTAifn+L/Scu1Kyd27dot1S8WceTRATpEZVRBp6iOrlADNRFFCbpHj+jJSq0H69l6mbfmrMXMPvoG6/UDDseRtw==</latexit>
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TABLE I
FOUR TRAINING TASKS WE TESTED: PARAMETER SETTINGS.

Parameter CIFAR-10 FEMNIST
Purchase-

100
Tiny-

Shakespeare

K 100 250 100 70/50
# selected 20 200 60 50/30

# minimum 15 150 30 25
# erased 1/2 1/2 1/2 2/4
Samplers non–i.i.d. non–i.i.d. non–i.i.d. i.i.d.
Models VGG-16 LeNet-5 MLP GPT-2

(Tiny Shakespeare). It is worth noting that the Federated
EMNIST (or FEMNIST) dataset is specifically designed for FL
experiments, by pre-processing and partitioning the dataset
into 3597 clients using metadata in the original EMNIST dataset.
Important hyperparameters that we used in our experiments
are listed in Table I, including the total number of clients, the
number of clients selected per round, the minimum number
of clients aggregated in asynchronous FL, and the number of
clients requesting data erasures. Similar to Section III, we use
a heavy-tailed Pareto distribution to simulate the asynchronous
clients’ training time, with its positive parameter ↵ = 1. We
run our experiments on an in-house server with three NVIDIA
RTX A4500 GPUs with 20 GB of CUDA memory each, 40
CPU cores, and a total of 256 GB memory.

B. KNOT: Performance Evaluation

Performance with benchmark datasets. To evaluate the
performance of KNOT, we choose to compare it with (1)
synchronous FedAvg as the synchronous baseline algorithm;
(2) FedBuff [4] as the asynchronous baseline algorithm; (3)
the rapid retraining algorithm proposed by Liu et al. [7], a
state-of-the-art exact retraining algorithm (labeled as INFOCOM
2022 in our figures) without using approximations; and (4)
random clustered aggregation without optimization. Though
KNOT can work with any retraining algorithm, we evaluate it
with the naïve algorithm of retraining from scratch so that its
potential performance advantage is not attributed to the choice
of the retraining algorithm.

We begin our experiments with three widely-used bench-
mark datasets: CIFAR-10, FEMNIST and Purchase-100. Our
results over these datasets are shown in Figs. 5a to 5c, respec-
tively. From these results, we can make a number of important
observations. First, with client heterogeneity, FedBuff outper-
formed synchronous FedAvg by a very substantial margin.
When training with the CIFAR-10 dataset, for example, to
reach an accuracy of 75%, it took FedAvg 4426 seconds and
FedBuff 2036 seconds only, reflecting an improvement of 54%.
Second, random clustered aggregation — which serves as the
foundation for KNOT — performed exceptionally well. With
our three datasets, it outperformed FedBuff by 73%, 45%, and
61%, respectively.

Last but not least, thanks to optimized client-cluster as-
signments, KNOT enjoyed a minor performance advantage
over random clustered aggregation, as it outperformed FedBuff

by 85%, 52%, and 64%, respectively, over our datasets. In

addition, we observed that it took KNOT a negligible overhead
of less than a second to solve its optimization problem using
Mosek 9, which is an off-the-shelf LP solver. This has
clearly shown the benefits of transforming our lexicographical
minimization problem to an equivalent linear programming
problem, and solving the latter to optimality.

Real-world performance with the GPT-2 model. In order
to evaluate the performance of KNOT when training a much
larger model in a real-world language modeling task, we used
a common dataset, Tiny Shakespeare, which has 40,000 lines
of Shakespeare from a variety of Shakespeare’s plays. We
train a distilled variant of the celebrated GPT-2 model, which
is a transformer from the HuggingFace framework [25]. Our
results have been shown in Fig. 6a. Again, we observed that
KNOT was able to outperform its competitors, achieving a
33% faster wall-clock training time compared to FedBuff and
a small but performance advantage over random clustering,
reaching a perplexity of 37.5 (lower perplexities are better in
language modeling tasks).

Comparisons with FedEraser. FedEraser [2] represents
one of the state-of-the-art retraining algorithms that used
approximations, rather than naïve retraining from scratch.
Though it requires less computation during the retraining
process, it may not be considered to be in full compliance with
regulatory policies such as GDPR. As an orthogonal approach,
KNOT can work with FedEraser or any other approximation
algorithm; it is nevertheless interesting to compare FedEraser’s
performance to KNOT with naïve retraining. For this reason,
we conducted more experiments with exactly the same settings
— including random seeds to ensure reproducibility — using
FedEraser, and included our results in Table II. It can be
observed that though FedEraser outperformed the FedBuff

baseline by a small margin in FEMNIST and Purchase-100,
it performed 2% worse (marked by #) in CIFAR-10, and
failed to work correctly with the much larger GPT-2 model
(which has not been evaluated in [2]). Overall, even with naïve
retraining, KNOT outperformed FedEraser by 85%, 47%, and
56%, respectively, in our benchmark datasets.

TABLE II
KNOT VS. ITS COMPETITORS: A COMPARISON REGARDING THE

WALL-CLOCK TIMES NEEDED TO CONVERGE TO A TARGET ACCURACY (OR
PERPLEXITY).

Mechanism CIFAR-10 FEMNIST
Purchase-

100
Tiny-

Shakespeare

Accuracy (%) 75 60 63.5 37.5
FedBuff (secs) 2036 4272 2381 16293

FedEraser 2%# 10%" 19%" –
Random 73%" 45%" 61%" 27%"
KNOT 85%" 52%" 64%" 33%"

Rapid retraining. In contrast to FedEraser, the rapid re-
training algorithm [7] (labeled as INFOCOM’22), is indeed an
exact retraining algorithm. Unfortunately, we discovered that
its performance was even worse than FedEraser across all of
our datasets: it failed to converge, and could not be included in
Table II as a result. In addition, with the Tiny Shakespeare
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Fig. 5. KNOT vs. its leading competitors over three benchmark datasets.

(a) Tiny Shakespeare (converging to lower
perplexity values)

(b) Combining KNOT with INFOCOM’22
on CIFAR-10.

(c) The unlearning efficiency when data from 2
clients (4 in Tiny Shakespeare) is to be erased.

Fig. 6. (a) KNOT vs. its leading competitors over a large-scale language modeling task using a distilled GPT-2 model and the Tiny Shakespeare dataset. (b)
Using KNOT with the retraining algorithm in [7]. (c) Speedup comparisons over the synchronous baseline: KNOT vs. its competitors with two clients (four
in the language modeling task) erased.

dataset, rapid retraining required a memory footprint that
was approximately 200% higher than KNOT, while producing
much worse performance as shown in Fig. 6a. Nevertheless,
as it is an exact retraining algorithm, it would be interesting
to combine KNOT with rapid retraining, and evaluate KNOT’s
performance with this new variant. Our results over CIFAR-10,
plotted in Fig. 6b, showed that the use of KNOT substantially
improved the convergence behavior of rapid retraining; yet it
was still much worse than using KNOT with naïve retraining. It
turned out that naïve retraining is not so “naïve” anyway! This
experiment also showed that KNOT is indeed orthogonal to
retraining algorithms, and can be combined with them easily.

Varying the number of clients requesting data erasures.
In order to explore whether the number of clients requesting
data erasures has an effect on KNOT’s performance, we also
designed experiments to erase the data on a varying number
of clients under the same conditions. Fig. 6c shows our results
— with respect to the speedup over the synchronous FedAvg
baseline — with two clients requesting data erasure (rather
than one in our previous experiments), and four clients when
training GPT-2 with the Tiny Shakespeare dataset. It can be
easily observed that KNOT and random clustered aggregation
still performed substantially better than FedEraser, and rapid
retraining failed to converge.

VI. CONCLUDING REMARKS

While existing works on federated unlearning focused on
improving its performance with more efficient retraining algo-
rithms, we sought to take a decidedly different and orthogonal
approach in this paper with the introduction of clustered
aggregation. The efficacy of our approach hinges upon the
intuition that the retraining process can be constrained to
within a cluster only, if server aggregation is only performed
within each cluster, and training sessions in the other clusters
can be carried out asynchronously. As an original highlight of
this paper, we are the first to propose asynchronous federated

unlearning, taking advantage of the well-recognized perfor-
mance benefit of asynchronous FL. KNOT, our optimization-
based clustered aggregation mechanism, pushes the perfor-
mance envelope further by not only formulating the client-
cluster assignment problem as a lexicographical minimization
problem, but also proving that it can be solved efficiently using
a linear program solver. With our scalable and reproducible
implementation, we have shown that the wall-clock training
time with KNOT is up to 85% better than FedEraser, a state-of-
the-art on approximation algorithm, even when retraining from
scratch. Last but not the least, our experiments were designed
to be reproducible, and we have provided public access to
our source code at https://github.com/TL-System/plato/
tree/main/examples/knot.
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