Asynchronous Federated

Ningxin Su, Baochun Li **Department of Electrical and Computer Engineering University of Toronto**

Policy and regulation constraints such as GDPR required users to have "the right to erasure" — to erase effects of private data from a trained model

Machine Unlearning

Data before erasure

Data after erasure

Federated

Nachne Unearning

Federated Machine Unlearning Related Work

G. Liu, et al. "FedEraser: Enabling Efficient Client-Level Data Removal from Federated Learning Models," IEEE/ACM 29th International Symposium on Quality of Service (IWQoS), 2021.

FedEraser: an approximation algorithm designed to speed up the unlearning process, but difficult to evaluate its effectiveness

Y. Liu, et al. "The Right to be Forgotten in Federated Learning: An Efficient Realization with Rapid Retraining," IEEE INFOCOM 2022.

INFOCOM 22: Second-order optimization to speed up the unlearning process when retraining from scratch

Asynchronous federated learning

Asynchronous federate learning is faster!

Can we combine asynchrony and unlearning?

Can we combine asynchrony and unlearning?

We can, and with benefits!

Knot Combining asynchrony and unlearning

J. Nguyen, et al., "Federated Learning with Buffered Asynchronous Aggregation," Int'l Conference on Machine Learning (ICML), 2021.

Intuitively, clustering helps reduce the risk of rolling back to retrain

Knot **Problem Formulation**

Optimizing Client-Cluster Assignment

 $d_{kn} = \| \begin{bmatrix} a(\widetilde{T}_n - T_k), b(\widetilde{S}_n - S_k) \end{bmatrix} \|_2$ training time model disparity

Assigning clients C_k into clusters L_n

Formulating the Optimization Problem

Formulating the Optimization Problem lexmin $f = (d_{11}x_{11}, \dots, d_{kn}x_{kn}, \dots, d_{KN}x_{KN})$ ${\mathcal X}$

Formulating the Optimization Problem lexmin $f = (d_{11}x_{11}, ..., ...)$ ${\mathcal X}$

$$, d_{kn}x_{kn}, \ldots, d_{KN}x_{KN})$$

 $x \in \{0, 1\}^{KN}, x = (x_{11}, \dots, x_{KN})$

Formulating the Optimization Problem lexmin $f = (d_{11}x_{11}, \dots, d_{kn}x_{kn}, \dots, d_{KN}x_{KN})$

 $x_{11} = 1$ $x_{12} = 0$

 $x \in \{0, 1\}^{KN}, x = (x_{11}, \dots, x_{KN})$

$x_{21} = 1$ $x_{22} = 1$

lexmin $f = (d_{11}x_{11}, \dots, d_{kn}x_{kn}, \dots, d_{KN}x_{KN})$ \mathcal{X} \mathbf{N} s.t. $\sum x_{kn} \leq c_1, \forall k \in \mathcal{K}$ (2) n=1N $x_{kn} \ge 1, \ \forall k \in \mathcal{K} \quad (3)$ n=1K $x_{kn} \ge c_2, \ \forall n \in \mathcal{N} (4)$ k=1K $x_{kn} \leq c_3, \ \forall n \in \mathcal{N} (5)$ k = 1

lexmin $f = (d_{11}x_{11}, \dots, d_{kn}x_{kn}, \dots, d_{KN}x_{KN})$ \mathcal{X} \mathbf{N} s.t. $\sum x_{kn} \leq c_1, \forall k \in \mathcal{K}$ (2) n=1N $x_{kn} \ge 1, \ \forall k \in \mathcal{K}$ (3) n=1K $x_{kn} \ge c_2, \ \forall n \in \mathcal{N} (4)$ k=1K $x_{kn} \leq c_3, \ \forall n \in \mathcal{N} \ (5)$ k = 1

+ of clusters a client belongs to

lexmin $f = (d_{11}x_{11}, \dots, d_{kn}x_{kn}, \dots, d_{KN}x_{KN})$ \mathcal{X} \mathbf{N} s.t. $\sum x_{kn} \leq c_1, \forall k \in \mathcal{K}$ (2) n=1N $x_{kn} \ge 1, \ \forall k \in \mathcal{K}$ (3) n=1K $x_{kn} \ge c_2, \ \forall n \in \mathcal{N} (4)$ k=1K $\sum x_{kn} \leq c_3, \ \forall n \in \mathcal{N} (5)$ k = 1

+ of clusters a client belongs to

+ of clients a cluster can have

Transforming into an LP Problem

R. R. Meyer, "A Class of Nonlinear Integer Programs Solvable by a Single Linear Program," *SIAM Journal on Control and Optimization*, vol. 15, no. 6, pp. 935–946, 1977.

Transforming into an LP Problem

\mathcal{X}

R. R. Meyer, "A Class of Nonlinear Integer Programs Solvable by a Single Linear Program," SIAM Journal on Control and Optimization, vol. 15, no. 6, pp. 935–946, 1977.

lexmin $f = (d_{11}x_{11}, \dots, d_{kn}x_{kn}, \dots, d_{KN}x_{KN})$

Transforming into an LP Problem lexmin $f = (d_{11}x_{11}, \dots, d_{kn}x_{kn}, \dots, d_{KN}x_{KN})$ \mathcal{X}

Separable convex objective $\min_{x} \sum_{k \in \mathcal{K}} \sum_{n \in \mathcal{N}} (KN)^{D_{kn} x_{kn}}$

R. R. Meyer, "A Class of Nonlinear Integer Programs Solvable by a Single Linear Program," SIAM Journal on Control and Optimization, vol. 15, no. 6, pp. 935–946, 1977.

Transforming into an LP Problem lexmin $f = (d_{11}x_{11}, \dots, d_{kn}x_{kn}, \dots, d_{KN}x_{KN})$ \mathcal{X}

Separable convex objective $\min_{x} \sum_{k \in \mathcal{K}} \sum_{n \in \mathcal{N}} (KN)^{D_{kn} x_{kn}}$

R. R. Meyer, "A Class of Nonlinear Integer Programs Solvable by a Single Linear Program," SIAM Journal on Control and Optimization, vol. 15, no. 6, pp. 935–946, 1977.

Totally unimodular matrix Constraints (2), (3), (4) and (5)

Knot **Experimental Results**

Experimental Settings

Parameter	CIFAR-10	FEMNIST	Purchase- 100	Tiny- Shakespeare
K	100	250	100	70/50
# selected	20	200	60	50/30
# minimum	15	150	30	25
# erased	1/2	1/2	1/2	2/4
Samplers	non-i.i.d.	non-i.i.d.	non-i.i.d.	i.i.d.
Models	VGG-16	LeNet-5	MLP	GPT-2

Optimal clustering > random clustering > no clustering

Optimal and fast Optimal clustering > random clustering > no clustering

ningxinsu.github.io