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Production FL

 Not limited to original federated learning…

    distributed machine learning

    more practical

    security
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Even the smallest 7B Llama 2 model 
takes 32 GB of GPU memory (LoRA, 
batch size of 4, no quantization)
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Conventional federated learning (FL) 
requires sending model updates to the 
server — but the models are too large!

Llama 2 7B: 27GB of data to be sent in each round of communication



5

Challenges of training LLMs under the FL structure: 

    computation resource constraints

    communication overhead

     heterogeneity …



Titanic, a new distributed training paradigm that can

    fine-tune LLMs 

    operate within the computation and communication 
constraints

    preserve privacy
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How? 

    By technically separating fine-tuning to clients and server

However, scalability is limited in split learning.

    We seek a more general paradigm
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Titanic - High level
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TABLE I
HOW EXISTING WORK IN THE LITERATURE NAVIGATES THE DESIGN CHOICES IN DISTRIBUTED TRAINING WHILE PRESERVING DATA PRIVACY.

Design Choice Conventional FL [6] Split Learning [3], [4] SplitFed Learning [7] TITANIC

Model partitions Entire model on each client 2 partitions 2 partitions Flexible – from 2 to k partitions

Aggregation Aggregates entire models
on the server No aggregation Aggregates client-side models

on the server
Flexible –

with or without aggregation

Server-side training No training –
aggregation only Yes – GPU required Yes – GPU required No training –

aggregation may be used

of clients with local private data scales up, the server may
become a bottleneck with respect to computation. Second, if
we need to produce a shared global model after the fine-tuning
process concludes, we need to use SplitFed learning [7] to
aggregate client-side model partitions using an aggregation
algorithm such as Federated Averaging, but any aggregation
would lead to a reduced model performance as compared to
centralized training, which can be quite substantial. Finally,
despite its appeal in the research literature, there does not exist
an open-source implementation of split learning for production
systems, in which model partitioning can be fully automated
in a model-agnostic fashion.

Design Space. Our discussions so far have led to the
following design choices that we should consider when fine-
tuning LLMs with privacy preservation:
. The number of model partitions. With the exponentially

increasing sizes of LLMs [5], simply dividing a large
model into a client and a server partition, as split learning
proposed, is insufficient. To accommodate large models,
TITANIC needs to be designed to support partitioning the
model into k partitions, where k is the number of client
devices selected in each communication round.

. With or without server aggregation. While server aggre-
gation is the foundation of conventional FL, the original
split learning [3] proposed a variant that does not perform
server aggregation. Instead, client-side model snapshots
were transmitted across clients between different rounds
of training. As a training paradigm for LLMs, TITANIC
needs to adopt a more general design and support bet-
ter flexibility: aggregation increases the degree of par-
allelism, leading to faster training; but it reduces the
performance of the fine-tuned model after convergence.

. Training on the server. As split learning and SplitFed
learning requires the server to be involved in the fine-
tuning process, the GPU resources required for such
training incurs ongoing operating expenses (OpEx). Due
to the formidable sizes of LLMs, such operating expenses
can be costly.

We summarize these design choices in Table I, highlighting
the tenet in TITANIC’s design philosophy: we seek to avoid
such OpEx entirely and use the server only for aggregation
(if needed), and provide a sufficient amount of flexibility with
respect to model partitioning and server aggregation.

Client Selection. There exists a variety of client selection
algorithms in conventional FL (e.g., [8]), designed to improve
the speed of convergence by selecting from a large pool of
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Fig. 1. TITANIC’s architectural design at a high level.

clients with not independent and identically distributed (non-
i.i.d.) data. In contrast, TITANIC is not concerned about data
heterogeneity; instead, as clients need to carry potentially
heavy training workloads locally, we need to select clients
who have the best possible resources with respect to both
computation and network bandwidth.

III. TITANIC: ARCHITECTURAL DESIGN

A. Design Overview

The overarching design philosophy of TITANIC is not unlike
application-layer overlays and (shortly afterwards) peer-to-
peer networks, designed over two decades ago [9] and is
still in practical use today as the foundation of BitTorrent
[10]. In essence, rather than using a server to carry the bulk
of the training workload — which is computation-intensive
due to the extreme sizes of LLMs — TITANIC represents a
new distributed training paradigm that allows client devices to
collaborate with one another in a peer-to-peer fashion. Fig. 1
illustrates the overall architectural design in TITANIC.

There is an abundance of related work in the conventional
FL literature on peer-to-peer federated learning (e.g., [11],
[12]). The main difference between conventional client-server
FL and peer-to-peer FL is that model updates are no longer
routed via and aggregated on the server; instead, they are
exchanged between peers directly. This implies that existing
work on peer-to-peer federated learning still assumes that the
model can be trained or fine-tuned on each client device in its
entirety, which is no longer practically feasible for LLMs.

Rather than training an entire model locally on each client,
an LLM is divided into multiple partitions, each partition
trained by one of the selected clients. TITANIC features a
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Design principle of Autograd Bridge:

    Automate model partitioning by client resources 
constraints, model agnostic

    Pytorch is isolated from network transmission (via 
autograd-bridge)
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A little more details about implementation

    Overwrite backward( ) to receive gradients cross client 
without influencing the model

    Use WebSockets protocol over HTTPS for generality

10
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A tale of three cases
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Case 1: Only one client trains with its local data
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Case 2: Multiple clients train with their local data, without aggregation
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Case 2: Multiple clients train with their local data, without aggregation
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Case 2: Multiple clients train with their local data, without aggregation
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Fig. 4. If the amount of GPU memory is sufficient to accommodate two
partitions, we do not need to swap model partitions between rounds. Instead,
we assign partition 1, containing all the input stages, to all the clients so
that they can train with their local data, either concurrently or sequentially.
No aggregation is necessary if we train sequentially, but we need to migrate
partition 1 across clients. Training concurrently improves the training speed,
but aggregation degrades model accuracy after convergence.

aggregation. As shown in our example in Fig. 4, if we allow
the server to perform aggregation, the clients no longer need
to start training sequentially one after another. Instead, their
fine-tuning processes can proceed concurrently. In this case,
weights in partition 1 will vary across different clients after
fine-tuning and need to be aggregated, as they are trained using
different local data. In contrast, downstream partitions in the
model are shared, and do not need to be aggregated. This case
is similar to SplitFed learning [7] (without the need for a GPU
server to perform training), in which client-side models need
to be aggregated while the server’s model is shared.

D. Communication Costs: Quantitative Analysis
In essence, in the unfortunate situation that an LLM does

not fit into the GPU memory of one client device and must
be partitioned, TITANIC’s design achieves various points of
tradeoffs between training speed (with more concurrency and
server aggregation) and model accuracy (with no concurrency
and no aggregation either). But how does its communication
costs compare with conventional FL, measured in bytes of data
to be transferred?

The communication efficiency in conventional FL has been
extensively studied in the literature (e.g., [14]). In essence,
model updates of a particular size (which can be smaller if
quantization or pruning is used) were transmitted to the server
by each client in every communication round. Consider c
clients are selected in each round and a model size of sm bytes,
if the fine-tuning process takes r rounds in total to converge
and er epochs take place in local training in each round, we
have a total of sFL = 2 · sm · c · r · er bytes of communication
costs that need to be transmitted to and from the server.

With TITANIC, we no longer need to send model updates
to the server. Instead, intermediate outputs and gradients are
transmitted across client devices in a peer-to-peer fashion.
Assuming that the size of intermediate outputs and gradients

from one client to its downstream neighbor is sn, in each
iteration, si = sn · c · 2 bytes are transmitted sequentially, the
forward and backward passes combined. If a dataset used for
fine-tuning has b batches, we need a total communication cost
of sTitanic = si · b · r · er to converge.

Naturally, whether TITANIC compares favorably with con-
ventional FL in terms of total communication costs depends on
the practical values of sn · b (for TITANIC) vs. sm (for FL). In
the case of large language models, sm is exceedingly large: the
smallest 7B Llama 2 model weighs in at 27 GB. In contrast,
at a batch size of 4, the payload size for intermediate output
for the same Llama 2 model is around 6.25 MB, which is
approximately 4400⇥ smaller. In this case, as long as we have
fewer than 4400 batches in our fine-tuning dataset — which is
most likely the case as fine-tuning uses only a small number
of data samples — TITANIC incurs a lower communication
cost than conventional FL. In cases where parameter-efficient
fine-tuning techniques such as LoRA [2] is used, sm is much
smaller, weighing in at 20 MB. In this case, if we have
more than 3 batches in our dataset, TITANIC underperforms
compared to LoRA-based FL.

It goes without saying that the training speed is also affected
by the network bandwidth, in addition to the communication
cost. In conventional FL, the server is the bandwidth bot-
tleneck, so concurrent connections from all selected clients
to the server is equivalent to transmitting from each client
sequentially. If we wish to compare the training speed of FL
vs. TITANIC, we need to consider how bandwidth at each client
compares with the server bandwidth. In general, server band-
width is an order of magnitude higher than client bandwidth
due to the differences in access networks. In conclusion, how
TITANIC compares with FL in terms of communication costs
and the training speed depends heavily on parameter settings
and bandwidth availability; but for large language models, due
to the lack of GPU memory on the clients, we may not have
a choice.

IV. AUTOGRAD BRIDGE: DESIGN AND IMPLEMENTATION

The foundation of TITANIC is its basic building block: the
Autograd Bridge. It provides the necessary mechanism that
inter-connects different client devices and supports both the
forward pass and backpropagation. Conceptually its design is
quite simple; but implementing it in a fully automated fashion
without any changes to existing LLMs is a daunting challenge.

At first glance, the peer-to-peer communication pattern in
TITANIC’s design appears to be similar to model parallelism
[15] and pipeline parallelism [16], [17] in distributed machine
learning. Both model and pipeline parallelism allow a large
model to be divided into smaller partitions, so that they
can be trained over multiple GPUs. Data communication
occurs between GPUs, potentially spanning multiple physical
machines, in a peer-to-peer fashion.

However, there are two important differences between TI-
TANIC and model or pipeline parallelism. First, as a fully
decentralized training paradigm and similar to federated learn-
ing, TITANIC is designed to operate over the Internet using

Case 3: Multiple clients train with their local data, with aggregation



Available bandwidth and computation resources across 
clients or servers can be significantly different.

Client selection becomes a necessary step to ensure optimal 
performance.

First, assign model partitions  to clients ,   
and  correspond to the total number of model partitions and 
clients, respectively.

{Pk}k∈K {Cn}n∈N K
N

17



match distance: 

 is the transmission duration; and  is the training time

affinity: 

And we also need to take GPU memory into account. 

We have several many details here, please find them in paper.

dkn = a ⋅ Dk
n + b ⋅ Tk

n
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n
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The problem can be transformed into an LP problem;

and the LP relaxation does not affect the integrality of the 
optimal solution [1].

Mosek [2] solver took less than 40 milliseconds for 100 clients 
and 32 partitions. 

[1] R. R. Meyer, “A Class of Nonlinear Integer Programs Solvable by a Single Linear 
Program,” SIAM Journal on Control and Optimization, vol. 15, no. 6, pp. 935–946, 1977. 
[2] MOSEK Optimizer API for Python, https://docs.mosek.com/latest/pythonapi/index.html
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tuned models. In Table II, we present a detailed comparison
study of the model perplexity between centralized training,
conventional FL, and TITANIC (with two and four clients).
Off the bat, a surprising yet important observation is that
conventional FL with Federated Averaging (FedAvg) failed to
work effectively, producing models of much worse quality (the
lower the perplexity, the better). FL with FedAvg produced
models that were even worse than using 1/4 of the data in
TITANIC with C1 only. We believe that this is attributed to
the use of LoRA for parameter-efficient fine-tuning in our
experiments: using FedAvg to compute the average of local
LoRA adapters will produce a shared adapter that performed
much worse. In contrast, TITANIC was able to obtain models
that were comparable in quality to centralized fine-tuning; and
unsurprisingly, using two clients — each with half of the data
— performed better than using four clients, each with 1/4 of
the data.

Convergence behavior. Beyond the quality of the fine-
tuned models, we are also interested in the convergence be-
havior at run-time. In Fig. 6, we compare TITANIC (again with
2 and 4 clients) with centralized training using the OPT-1.3B

and Bloom-3B models, respectively. As we expected, using
4 clients with TITANIC performed slightly worse than using
2 clients, but both were similar to centralized fine-tuning in
terms of their convergence behavior over multiple epochs.

Last but not the least, we fine-tuned the much larger
Llama 2-7B model to see if the convergence behavior may be
different from its smaller counterpart. Our results, illustrated
in Fig. 7, showed that due to the size of this model, training
loss rapidly converged to a very low value, which implied
that this model only needed a small number of data samples
to fine-tune successfully. Data from additional clients were
not really necessary. That said, this experiment showed that
TITANIC, with its design of the Autograd Bridge, was able to
seamlessly partition large language models of any size without
issues.

TABLE II
FINE-TUNING LLMS USING CENTRALIZED TRAINING, CONVENTIONAL FL

WITH FEDERATED AVERAGING, AND TITANIC.

Model Methods Perplexity

OPT-1.3B

Centralized 18.02

FL with FedAvg 34.01

TITANIC with 4 clients
C1 ! C2 ! C3 ! C4

20.67 ! 19.34 !
19.38 ! 19.17

TITANIC with 2 clients
C1 ! C2

18.77 ! 17.23

Bloom-3B

Centralized 18.04

FL with FedAvg 30.24

TITANIC with 4 clients
C1 ! C2 ! C3 ! C4

25.16 ! 21.49 !
19.34 ! 20.58

TITANIC with 2 clients
C1 ! C2

19.68 ! 19.20

Llama 2-7B

Centralized 2.54

FL with FedAvg 3.56

TITANIC with 4 clients
C1 ! C2 ! C3 ! C4

2.90 ! 2.80 !
2.93 ! 3.34

TITANIC with 2 clients
C1 ! C2

2.30 ! 2.85
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(with 4 and 2 clients): fine-tuning the Llama 2-7B model.

VII. CONCLUDING REMARKS

Due to the enormous sizes of pretrained large language
models, it is an open problem and a formidable challenge
to fine-tune them collaboratively over multiple users, while
still preserving data privacy. Either conventional FL nor split
learning may be viable options in practice, as both the clients
and the server may not have sufficient amount of GPU
resources.

In this paper, we present TITANIC, a third alternative
that allows clients to collaboratively fine-tune a shared LLM
without the need of using GPU servers. The cornerstone of
TITANIC is the Autograd Bridge, which we implemented with
a focus on practicality, so that it works effectively with any
LLM, and without any source code modifications to the model
and its trainer. TITANIC is a distributed training paradigm that
can flexibly accommodate different communication patterns,
with or without server aggregation. We also proposed a client
selection algorithm that optimizes the assignment of model
partitions to clients without adding any complexity. Our per-
formance evaluations showed that TITANIC offers comparable
performance to centralized training.



21

Thank you


