Titanic: Towards Production Federated Learning with Large Language Models

University of Toronto Ningxin Su, Chenghao Hu, Baochun Li, Bo Li (HKUST)

Production FL

Not limited to original federated learning...

distributed machine learning

more practical

security

Even the smallest 7B Llama 2 model takes 32 GB of GPU memory (LoRA, batch size of 4, no quantization)

Conventional federated learning (FL) requires sending model updates to the server — but the models are too large!

Llama 2 7B: 27GB of data to be sent in each round of communication

Challenges of training LLMs under the FL structure: computation resource constraints communication overhead

heterogeneity ...

Titanic, a new distributed training paradigm that can

fine-tune LLMs

operate within the computation and communication constraints

preserve privacy

How?

By technically separating fine-tuning to clients and server However, scalability is limited in split learning. We seek a more general paradigm

Titanic - High level

Design principle of Autograd Bridge:

Automate model partitioning by client resources constraints, model agnostic

Pytorch is isolated from network transmission (via autograd-bridge)

A little more details about implementation

without influencing the model

- Overwrite *backward()* to receive gradients cross client
- Use WebSockets protocol over HTTPS for generality

A tale of three cases

11

Case 1: Only one client trains with its local data

Model Case 3: Multiple clients train with their local data, with aggregation

Available bandwidth and computation resources across clients or servers can be significantly different.

Client selection becomes a necessary step to ensure optimal performance.

clients, respectively.

First, assign model partitions $\{P_k\}_{k \in K}$ to clients $\{C_n\}_{n \in N}$, K and N correspond to the total number of model partitions and

match distance:

D_n^k is the transmission duration; and T_n^k is the training time

affinity

And we also need to take GPU memory into account. We have several many details here, please find them in paper.

$$d_{kn} = a \cdot D_n^k + b \cdot T_n^k$$

$$I: A_n^k = \frac{1}{d_n^k}$$

The problem can be transformed into an LP problem;

and the LP relaxation does not affect the integrality of the optimal solution [1].

and 32 partitions.

[1] R. R. Meyer, "A Class of Nonlinear Integer Programs Solvable by a Single Linear Program," SIAM Journal on Control and Optimization, vol. 15, no. 6, pp. 935–946, 1977. [2] MOSEK Optimizer API for Python, https://docs.mosek.com/latest/pythonapi/index.html

Mosek [2] solver took less than 40 milliseconds for 100 clients

Client 1

Client 2

ods	Perplexity
lized	18.02
FedAvg	34.01
th 4 clients	$20.67 \rightarrow 19.34 \rightarrow$
$\rightarrow C_3 \rightarrow C_4$	$19.38 \rightarrow 19.17$
th 2 clients $\rightarrow C_2$	$18.77 \rightarrow 17.23$
lized	18.04
FedAvg	30.24
th 4 clients	$25.16 \rightarrow 21.49 \rightarrow$
$\rightarrow C_3 \rightarrow C_4$	$19.34 \rightarrow \textbf{20.58}$
th 2 clients $\rightarrow C_2$	$19.68 \rightarrow 19.20$
lized	2.54
FedAvg	3.56
th 4 clients	$2.90 \rightarrow 2.80 \rightarrow$

Client 3

Client 4

Thank you

