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Production FL
Not limited to original federated learning...
distributed machine learning
more practical

security



Even the smallest 7B Llama 2 model
takes 32 GB of GPU memory (LOoRA,
batch size of 4, no quantization)




Conventional federated learning (FL)
requires sending model updates to the
server — but the models are too large!

Llama 2 7B: 27GB of data to be sent in each round of communication



Challenges of training LLMs under the FL structure:
computation resource constraints

communication overhead



Titanic, a new distributed training paradigm that can
fine-tune LLMs

operate within the computation and communication
constraints

preserve privacy



How?
By technically separating fine-tuning to clients and server
However, scalability is limited in split learning.

We seek a more general paradigm
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Design principle of Autograd Bridge:

Automate model partitioning by client resources
constraints, model agnostic

Pytorch is isolated from network transmission (via
autograd-bridge)



A little more detalls about implementation

Overwrite backward( ) to receive gradients cross client
without influencing the model

Use WebSockets protocol over HTTPS for generality
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A tale of three cases
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Local data
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Case 3: Multiple clients train with their local data, with aggregation
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Avalilable bandwidth and computation resources across
clients or servers can be significantly different.

Client selection becomes a necessary step to ensure optimal
performance.

First, assign model partitions { P },-x to clients {C, }, cny K
and /N correspond to the total number of model partitions and
clients, respectively.
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match distance: d,, = a- D"+ b - T"

D,]f IS the transmission duration; and T,]j s the training time

finity: AX :
affinity: A, = —

And we also need to take GPU memory into account.

We have several many details here, please find them in paper.
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The problem can be transformed into an LP problem;

and the LP relaxation does not affect the integrality of the
optimal solution [1].

Mosek [2] solver took less than 40 milliseconds for 100 clients
and 32 partitions.

[1] R. R. Meyer, “A Class of Nonlinear Integer Programs Solvable by a Single Linear
Program,” SIAM Journal on Control and Optimization, vol. 15, no. 6, pp. 935-946, 1977.

[2] MOSEK Optimizer API tor Python, https://docs.mosek.com/latest/pythonapi/index.html
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Model Methods Perplexity
Centralized 18.02
FL with FedAvg 34.01
OPT-1. 3B TITANIC with 4 clients 20.67 — 19.34 —
(1 —Cy - C3 = Cy 19.38 — 19.17
TITANIC with 2 clients 1877 — 17.23
01 — CQ
Centralized 18.04
FL with FedAvg 30.24
Bloom-3B TITANIC with 4 clients 25.16 — 21.49 —
(1 —Cy —Cg3 — (Cy 19.34 — 20.58
TITANIC with 2 clients
Cy —s O 19.68 — 19.20
Centralized 2.54
FL with FedAvg 3.56
Llama 2-7B TITANIC with 4 clients 290 — 2.80 —
(1 —Cy - C3 — Cy 2.93 — 3.34
TITANIC with 2 clients
2.30 — 2.85

01—>C2
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Thank you



