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Abstract—With the recent surge of research interests in Large
Language Models (LLMs), a natural question that arises is
how pre-trained LLMs can be fine-tuned to tailor to specific
needs of enterprises and individual users, while preserving the
privacy of data used in the fine-tuning process. On the one
hand, sending private data to cloud datacenters for fine-tuning
is, without a doubt, unacceptable from a privacy perspective.
On the other hand, conventional federated learning requires
each client to perform local training, which is not feasible for
LLMs with respect to both computation costs and communication
overhead, since they involve billions of model parameters. In
this paper, we present TITANIC, a new distributed training
paradigm that allows LLMs to be fine-tuned in a privacy-
preserving fashion directly on the client devices where private
data is produced, while operating within the resource constraints
on computation and communication bandwidth. TITANIC first
optimally selects a subset of clients with an efficient solution to
an integer optimization problem, then partitions an LLM across
multiple client devices, and finally fine-tunes the model with no
or minimal losses in training performance. A primary focus in
the design of TITANIC is its feasibility in real-world systems:
it is first and foremost designed for production-quality systems,
featuring a model-agnostic partitioning mechanism that is fully
automated. Our experimental results show that TITANIC achieves
superior training performance as compared to conventional
federated learning, while preserving data privacy and satisfying
all constraints on local computation and bandwidth resources.

I. INTRODUCTION

Originally stimulated by the advent of ChatGPT and re-
cently reinforced by the introduction of Llama 2 [1] from Meta
AI, it goes without saying that the recent surge in research
interests on generative artificial intelligence in general, and
Large Language Models (LLMs) in particular, will become
one of the most important research topics in the history of
computing. It may take months of time, trillions of tokens,
and hundreds of GPUs to train an LLM. However, once pre-
trained, it has been widely recognized that LLMs can be fine-
tuned with domain-specific knowledge for a wide variety of
downstream tasks, with much less computational resources.

When fine-tuning LLMs using data from corporations and
individual users, it is natural to think about a fundamental
question: how do we fine-tune LLMs while preserving the
privacy of data? Intuitively, the best way to preserve data
privacy is to train locally on each client device where data
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is originated and produced. This has been the tenet in the
design philosophy of federated learning (FL): private data is
never sent to cloud datacenters to start the fine-tuning process;
instead, the fine-tuning process should be carried out locally
on clients where private data resides.

However, conventional FL is unfit for fine-tuning LLMs
for two important reasons. First and more importantly, con-
ventional FL requires a model to be trained locally on each
client device, but the fine-tuning process over LLMs takes a
tremendous amount of computational resources. As an LLM
contains billions of parameters (e.g., Llama 2 models contain
7, 13, or 70 billion parameters), local fine-tuning depends on
the availability of GPUs with large amounts of GPU memory.
For example, even fine-tuning the smallest 7B Llama 2 model
in full precision with Low Rank Adapter (LoRA) [2] requires
around 32 GB of GPU memory (using a batch size of 4), as
optimizer states need GPU memory as well. Without using
LoRA, far more GPU memory is necessary for fine-tuning
such a large model. Existing work has studied how model
quantization and parameter-efficient fine-tuning help reduce
resource needs, but quantization may degrade the performance
of the fine-tuned model, while parameter-efficient fine-tuning
still needs a full copy of the original model weights to be
present in the GPU memory.

Second, conventional FL requires clients to send model up-
dates to the server in each communication round, and given the
size of LLMs, sending model updates is bandwidth-intensive
and may not be practically feasible. For example, the size of
the Llama 2 7B model is 27 GB, which needs to be sent to
the server from each client and in each communication round.
This is no longer tenable in most production FL settings.
Such exorbitant communication costs can be substantially
alleviated if LoRA is used in the fine-tuning process, with a
corresponding minor degradation in model performance after
convergence.

Some may argue that split learning [3], [4], where the model
is partitioned between a client and the server along a cut layer,
may be used so that clients need less computation resources for
local training, and model updates do not need to be sent at all
between clients and the server. Yet, due to a lack of resources
on each client, split learning offloads a majority of the training
workload to the server, which needs to be configured with
a sufficient amount of GPU memory. As the sizes of LLMs
exponentially increase over time [5], it becomes increasingly



impractical to offload a large portion of an LLM to the server
from the perspective of GPU resources.

In this paper, we design and implement TITANIC, a new
distributed training paradigm designed specifically for fine-
tuning pretrained LLMs while preserving data privacy. TI-
TANIC first optimally selects a subset of client devices to
start the fine-tuning process, then partitions an LLM across
them before fine-tuning the model with no or minimal losses
in the performance of the fine-tuned model. Similar to both
conventional FL and split learning, private raw data used for
fine-tuning never leaves the client device where they originate
from, which maximally preserves privacy. On the one hand,
unlike conventional FL, only a small portion of model weights
may be sent between clients and the server. On the other hand,
unlike split learning, no training is performed on the server,
which does not need GPU computation resources at all, and
there is no risk for the server to become a bottleneck when
the number of clients scales up. At a high level, TITANIC
combines the best of both worlds of conventional FL and
split learning, and is especially well suited for fine-tuning
excessively large pre-trained models such as LLMs.

Highlights of our original contributions in this paper are as
follows.

First, starting from a handcrafted implementation of its
plumbing, TITANIC is first and foremost designed to be
a distributed training paradigm for LLMs. It features a
novel Autograd Bridge, which is used as a basic build-
ing block to partition any LLM in a model-agnostic,
fully automated fashion. With a production-quality imple-
mentation of the Autograd Bridge, a pre-trained model
— such as one initialized with HuggingFace’s convenient
transformers.AutoModel.from_pretrained() method —
can be fine-tuned without any source code modifications, while
still allowing the model to be divided into multiple partitions
and distributed across their respective client devices.

Second, With TITANIC, an LLM is partitioned across — and
fine-tuned over — a chain of client devices in a collaborative
fashion. As a training paradigm, however, TITANIC offers
some degree of design freedom and flexibility with respect to
how the fine-tuning process proceeds. Different designs allow
their respective tradeoffs between training speed during the
fine-tuning process and the model performance after conver-
gence. At one extreme, TITANIC is able to achieve the same
model performance as centralized fine-tuning by trading off
some training speed. At the other extreme, it maximizes the
degree of parallelism by allowing clients to fine-tune concur-
rently; and akin to conventional FL and SplitFed learning, it
may use aggregation to produced a shared global model with
degraded model performance.

Third, Our extensive array of experimental results evaluating
TITANIC show clear evidence that it is able to outperform
conventional FL and split learning over LLMs with a variety
of sizes. As a training paradigm, TITANIC offers sufficient
flexibility to achieve various points of tradeoffs between
training speed and model performance after convergence;
but fundamentally, TITANIC offers a simple, fully distributed

mechanism to democratize the fine-tuning process, and trades
off training speed to minimize the operating expenses (OpEx)
incurred from leasing cloud GPU resources.

Last but not the least, To borrow a page from conventional
FL, TITANIC is able to accommodate the ability to select a
small number of client devices from a large set of potential
candidates. Rather than using random client selection or se-
lecting clients based on their data quality, TITANIC proposes
an optimal client selection mechanism by maximizing the
overall training and network performance, while satisfying
inherent constraints over GPU resources. We show that such
an integer optimization problem can be directly solved with a
linear program solver, as the objective function is convex and
the constraint matrix is totally unimodular. At moderate (and
practical) scales, exact optimal solutions can be computed in
a fraction of a second.

II. DESIGN SPACE AND RELATED WORK

In this paper, our overarching research objective is to fine-
tune pre-trained LLMs without violating data privacy. Related
work in the literature was designed for much smaller models,
and falls into the following categories.

Federated Learning. Starting from its inception, federated
learning (FL) [6] was designed to proceed in communication
rounds, and to follow several steps in each communication
round: the server first selects a number of clients from a larger
pool of available candidates, and then each selected client
trains a shared global model locally using its private data.
The model updates from these clients will then be sent back
to the server to perform aggregation, using aggregation algo-
rithms such as Federated Averaging (FedAvg). Convergence is
expected after a number of communication rounds.

Such a core mechanism in conventional FL naturally as-
sumes that when a client is selected, it has a sufficient
amount of computation resources to complete local training.
Unfortunately, this is no longer valid with the advent of LLMs,
each containing billions of model parameters. In practice, very
few client devices are equipped with the necessary amount of
GPU memory or computational power to fine-tune an entire
LLM locally. In addition, as model updates need to be sent
back to the server, their large sizes — 23.3 GB for the Llama
2 7B model — make it infeasible to use conventional FL for
fine-tuning LLMs while preserving data privacy.

Split Learning. With split learning [3], [4], a model is
partitioned between each client and the server along a cut
layer. Outputs at the cut layer are forwarded to the server in the
forward pass of training, which then complete the remaining
training process without access to private data. When gradients
reach the cut layer in backpropagation, they will be sent back
to the clients.

Despite the benefits over communication efficiency as split
learning avoids sending model updates, it suffers from three
main disadvantages. First, while conventional FL only uses
the server for model aggregation, with split learning, the
server needs a large amount of computational resources to
complete a large portion of the training process. As the number



TABLE I
HOW EXISTING WORK IN THE LITERATURE NAVIGATES THE DESIGN CHOICES IN DISTRIBUTED TRAINING WHILE PRESERVING DATA PRIVACY.

Design Choice Conventional FL [6] Split Learning [3], [4] SplitFed Learning [7] TITANIC

Model partitions Entire model on each client 2 partitions 2 partitions Flexible – from 2 to k partitions

Aggregation Aggregates entire models
on the server No aggregation Aggregates client-side models

on the server
Flexible –

with or without aggregation

Server-side training No training –
aggregation only Yes – GPU required Yes – GPU required No training –

aggregation may be used

of clients with local private data scales up, the server may
become a bottleneck with respect to computation. Second, if
we need to produce a shared global model after the fine-tuning
process concludes, we need to use SplitFed learning [7] to
aggregate client-side model partitions using an aggregation
algorithm such as Federated Averaging, but any aggregation
would lead to a reduced model performance as compared to
centralized training, which can be quite substantial. Finally,
despite its appeal in the research literature, there does not exist
an open-source implementation of split learning for production
systems, in which model partitioning can be fully automated
in a model-agnostic fashion.

Design Space. Our discussions so far have led to the
following design choices that we should consider when fine-
tuning LLMs with privacy preservation:
. The number of model partitions. With the exponentially

increasing sizes of LLMs [5], simply dividing a large
model into a client and a server partition, as split learning
proposed, is insufficient. To accommodate large models,
TITANIC needs to be designed to support partitioning the
model into k partitions, where k is the number of client
devices selected in each communication round.

. With or without server aggregation. While server aggre-
gation is the foundation of conventional FL, the original
split learning [3] proposed a variant that does not perform
server aggregation. Instead, client-side model snapshots
were transmitted across clients between different rounds
of training. As a training paradigm for LLMs, TITANIC
needs to adopt a more general design and support bet-
ter flexibility: aggregation increases the degree of par-
allelism, leading to faster training; but it reduces the
performance of the fine-tuned model after convergence.

. Training on the server. As split learning and SplitFed
learning requires the server to be involved in the fine-
tuning process, the GPU resources required for such
training incurs ongoing operating expenses (OpEx). Due
to the formidable sizes of LLMs, such operating expenses
can be costly.

We summarize these design choices in Table I, highlighting
the tenet in TITANIC’s design philosophy: we seek to avoid
such OpEx entirely and use the server only for aggregation
(if needed), and provide a sufficient amount of flexibility with
respect to model partitioning and server aggregation.

Client Selection. There exists a variety of client selection
algorithms in conventional FL (e.g., [8]), designed to improve
the speed of convergence by selecting from a large pool of
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Fig. 1. TITANIC’s architectural design at a high level.

clients with not independent and identically distributed (non-
i.i.d.) data. In contrast, TITANIC is not concerned about data
heterogeneity; instead, as clients need to carry potentially
heavy training workloads locally, we need to select clients
who have the best possible resources with respect to both
computation and network bandwidth.

III. TITANIC: ARCHITECTURAL DESIGN

A. Design Overview

The overarching design philosophy of TITANIC is not unlike
application-layer overlays and (shortly afterwards) peer-to-
peer networks, designed over two decades ago [9] and is
still in practical use today as the foundation of BitTorrent
[10]. In essence, rather than using a server to carry the bulk
of the training workload — which is computation-intensive
due to the extreme sizes of LLMs — TITANIC represents a
new distributed training paradigm that allows client devices to
collaborate with one another in a peer-to-peer fashion. Fig. 1
illustrates the overall architectural design in TITANIC.

There is an abundance of related work in the conventional
FL literature on peer-to-peer federated learning (e.g., [11],
[12]). The main difference between conventional client-server
FL and peer-to-peer FL is that model updates are no longer
routed via and aggregated on the server; instead, they are
exchanged between peers directly. This implies that existing
work on peer-to-peer federated learning still assumes that the
model can be trained or fine-tuned on each client device in its
entirety, which is no longer practically feasible for LLMs.

Rather than training an entire model locally on each client,
an LLM is divided into multiple partitions, each partition
trained by one of the selected clients. TITANIC features a



novel Autograd Bridge, which is used as a basic building block
to inter-connect collaborating clients during the fine-tuning
process. In a nutshell, an Autograd Bridge is used for both
the forward pass and backpropagation in the training process.
It is designed to be general over any neural network model
with any computation graph, and to transparently forward
any intermediate results computed by an upstream client to
its downstream neighbor, as well as any gradients produced
by a downstream client back to its upstream neighbor during
backpropagation.

B. Decentralized Fine-Tuning
With TITANIC, the simplest way to fine-tune an LLM in a

fully decentralized fashion is to first divide it into k multiple
partitions, and select an optimal set of k clients to host
them. The fine-tuning process proceeds sequentially one after
another from client 1 to client k, each uses its local data to
fine-tune the model. Upon completing the fine-tuning process,
clients can send their trained partitions to the server, to be
combined into a shared global model.

Conceptually, network flows through the Autograd Bridge
can be completed in direct TCP connections between the
clients. In reality, however, a server is most likely needed to
facilitate such peer-to-peer network connections as two clients
need to establish connectivity information by communicating
with an ICE (Internet Connectivity Establishment) server,
which can be either a STUN (Session Traversal Utilities for
NAT) or a TURN (Traversal Using Relay NAT) server, as used
by peer-to-peer real-time communication protocols such as
WebRTC [13]. For the best compatibility with Internet Service
Providers, a relay server running behind a reverse web proxy
(using web servers such as nginx) can be used, which simply
relays all traffic between a pair of clients.

C. A Tale of Three Cases
The question that remains at this point is how private

data may flow through the client devices, inter-connected by
instances of the Autograd Bridge. To answer this question, we
will introduce a number of cases gradually, by progressing
through a succession of increasing generality.
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Fig. 2. In the simple case as a starting point, if only one client has private
data locally, collaborating downstream clients will be engaged in both the
forward and backward passes during the fine-tuning process.

Case 1: Only one client trains with its local data. To
begin our introduction, let us consider the simple case where

only a single client has local private data to be used in the
fine-tuning process. As Fig. 2 illustrates, the client with local
data will feed its data into the first partition of the model, and
the computed intermediate results will be forwarded through
its collaborating downstream clients, and eventually back to
itself to complete the forward pass by computing the loss using
its labels. Naturally, backpropagation follows the reverse path
through the collaborating clients back to the first partition on
the same client.

Client 3

Local data

Client 1
1st model partition

Local data

Client 2
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Swap
Model

Client 2 Client 1 Client 3
Forward pass Forward pass

BackpropagationBackpropagation

Round #1 Round #2

Fig. 3. In the case where multiple clients train with their local data and
without aggregation, an exchange of model partitions between clients would
be necessary if we need to minimize the use of GPU memory on the clients.

Case 2: Multiple clients train with their local data,
without aggregation. In this case, we have multiple clients
with local data that needs to be used in the fine-tuning process.
Since data should never leave the client to preserve its privacy,
if we intend to minimize the use of GPU memory on the
clients, we must migrate the necessary model partition to the
client where data resides. To facilitate such migration, we may
swap model partitions between the client with local data to be
used in the future and the client with data that has already
been used in the past. In our example shown in Fig. 3, after
the swap, client 1 will host partition 2, whereas client 2 will
host partition 1 instead, which contains all the input stages of
the model’s computation graph. Just like our simple case with
one client, loss values still need to be computed on the client
with its local data, requiring a round trip for both forward and
backward passes.

In case that the amount of GPU memory on the clients is
sufficient to accommodate two partitions, we do not need to
consume network bandwidth to swap model partitions. Instead,
we may host partition 1 on all the clients with local data, in
addition to the model partition that was originally assigned to
them. This solution, shown in Fig. 4 with four clients, trades
off GPU memory usage to conserve network bandwidth and to
improve the training speed. If we avoid using aggregation for
the sake of model accuracy after convergence, each client can
train with its local data sequentially in rounds, and partition
1 needs to be migrated to the next client as the current one
finishes training. Round trips for both forward and backward
passes, just like in our simple case, are still required for loss
computation, but omitted in Fig. 4 for clarity.

Case 3: Multiple clients train with their local data, with
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Fig. 4. If the amount of GPU memory is sufficient to accommodate two
partitions, we do not need to swap model partitions between rounds. Instead,
we assign partition 1, containing all the input stages, to all the clients so
that they can train with their local data, either concurrently or sequentially.
No aggregation is necessary if we train sequentially, but we need to migrate
partition 1 across clients. Training concurrently improves the training speed,
but aggregation degrades model accuracy after convergence.

aggregation. As shown in our example in Fig. 4, if we allow
the server to perform aggregation, the clients no longer need
to start training sequentially one after another. Instead, their
fine-tuning processes can proceed concurrently. In this case,
weights in partition 1 will vary across different clients after
fine-tuning and need to be aggregated, as they are trained using
different local data. In contrast, downstream partitions in the
model are shared, and do not need to be aggregated. This case
is similar to SplitFed learning [7] (without the need for a GPU
server to perform training), in which client-side models need
to be aggregated while the server’s model is shared.

D. Communication Costs: Quantitative Analysis

In essence, in the unfortunate situation that an LLM does
not fit into the GPU memory of one client device and must
be partitioned, TITANIC’s design achieves various points of
tradeoffs between training speed (with more concurrency and
server aggregation) and model accuracy (with no concurrency
and no aggregation either). But how does its communication
costs compare with conventional FL, measured in bytes of data
to be transferred?

The communication efficiency in conventional FL has been
extensively studied in the literature (e.g., [14]). In essence,
model updates of a particular size (which can be smaller if
quantization or pruning is used) were transmitted to the server
by each client in every communication round. Consider c
clients are selected in each round and a model size of sm bytes,
if the fine-tuning process takes r rounds in total to converge
and er epochs take place in local training in each round, we
have a total of sFL = 2 · sm · c · r · er bytes of communication
costs that need to be transmitted to and from the server.

With TITANIC, we no longer need to send model updates
to the server. Instead, intermediate outputs and gradients are
transmitted across client devices in a peer-to-peer fashion.
Assuming that the size of intermediate outputs and gradients

from one client to its downstream neighbor is sn, in each
iteration, si = sn · c · 2 bytes are transmitted sequentially, the
forward and backward passes combined. If a dataset used for
fine-tuning has b batches, we need a total communication cost
of sTitanic = si · b · r · er to converge.

Naturally, whether TITANIC compares favorably with con-
ventional FL in terms of total communication costs depends on
the practical values of sn · b (for TITANIC) vs. sm (for FL). In
the case of large language models, sm is exceedingly large: the
smallest 7B Llama 2 model weighs in at 27 GB. In contrast,
at a batch size of 4, the payload size for intermediate output
for the same Llama 2 model is around 6.25 MB, which is
approximately 4400× smaller. In this case, as long as we have
fewer than 4400 batches in our fine-tuning dataset — which is
most likely the case as fine-tuning uses only a small number
of data samples — TITANIC incurs a lower communication
cost than conventional FL. In cases where parameter-efficient
fine-tuning techniques such as LoRA [2] is used, sm is much
smaller, weighing in at 20 MB. In this case, if we have
more than 3 batches in our dataset, TITANIC underperforms
compared to LoRA-based FL.

It goes without saying that the training speed is also affected
by the network bandwidth, in addition to the communication
cost. In conventional FL, the server is the bandwidth bot-
tleneck, so concurrent connections from all selected clients
to the server is equivalent to transmitting from each client
sequentially. If we wish to compare the training speed of FL
vs. TITANIC, we need to consider how bandwidth at each client
compares with the server bandwidth. In general, server band-
width is an order of magnitude higher than client bandwidth
due to the differences in access networks. In conclusion, how
TITANIC compares with FL in terms of communication costs
and the training speed depends heavily on parameter settings
and bandwidth availability; but for large language models, due
to the lack of GPU memory on the clients, we may not have
a choice.

IV. AUTOGRAD BRIDGE: DESIGN AND IMPLEMENTATION

The foundation of TITANIC is its basic building block: the
Autograd Bridge. It provides the necessary mechanism that
inter-connects different client devices and supports both the
forward pass and backpropagation. Conceptually its design is
quite simple; but implementing it in a fully automated fashion
without any changes to existing LLMs is a daunting challenge.

At first glance, the peer-to-peer communication pattern in
TITANIC’s design appears to be similar to model parallelism
[15] and pipeline parallelism [16], [17] in distributed machine
learning. Both model and pipeline parallelism allow a large
model to be divided into smaller partitions, so that they
can be trained over multiple GPUs. Data communication
occurs between GPUs, potentially spanning multiple physical
machines, in a peer-to-peer fashion.

However, there are two important differences between TI-
TANIC and model or pipeline parallelism. First, as a fully
decentralized training paradigm and similar to federated learn-
ing, TITANIC is designed to operate over the Internet using



standard transport protocols such as TCP, and across a wide
variety of client devices with limited computation resources.
This is in sharp contrast to the use of proprietary protocols,
such as NCCL [18], in modern frameworks (such as PyTorch)
to support model and pipeline parallelism. Second, private data
is produced at each client device in TITANIC, and should never
leave the device where data resides. This is not a consideration
when model and pipeline parallelism are used to train large
models in a GPU cluster.

Despite these differences, we can start our investigation
from a quick look at how model parallelism is implemented.
Consider the following toy model that contains two linear
layers. To run this model on two GPUs, we need to modify the
model implementation, assign each linear layer to a different
GPU, and move inputs and intermediate outputs to match the
layer devices accordingly.

class ToyModel(nn.Module):
def __init__(self):
super().__init__()
self.net1 = torch.nn.Linear(10, 10).to('cuda:0')
self.relu = torch.nn.ReLU()
self.net2 = torch.nn.Linear(10, 5).to('cuda:1')

def forward(self, x):
x = self.relu(self.net1(x.to('cuda:0')))
return self.net2(x.to('cuda:1'))

In this example, we need to manually divide the model into
net1 and net2, and rewrite the forward() method. Needless
to say, supporting pipeline parallelism needs more manual
modifications to the implementation of the model; and if we
need to support multiple nodes, a PyTorch Pipe API is needed
using torch.distributed.pipeline.sync.Pipe.

When designing TITANIC, such manual modifications to
LLMs would become infeasible given their complexity. Even
if we assume such modifications can be completed in one
particular LLM, doing the same for all the LLMs will quickly
become tedious and time-consuming. As new LLMs are pub-
lished in repositories such as the HuggingFace LLM Leader-
board [19] on a daily basis, manual modifications at the source
code level is out of the question. Interestingly, all existing
open-source implementations of split learning required such
manual modifications to the models.

Automating model partitioning. Towards designing and
implementing the Autograd Bridge, we seek to provide a flex-
ible, off-the-shelf solution for offloading any desired portion
of a computation graph in a model for remote execution.

Formally, a computation graph on a client ci can be defined
as G = (V,E), where V and E represent the sets of nodes and
edges, respectively. A node v ∈ V represents either a constant
value or an operator. An edge (vs, vt) ∈ E indicates that the
output of node vs will be passed as input to vt. From the
perspective of one client, a subgraph GR = (VR, ER) needs
to be extracted from G, where VR ⊂ V and ER ⊂ E, and
then offloaded to a downstream client ci+1 for remote compu-
tation. The remaining local computation graph is denoted as
GL = (VL, EL), where VL = V − VR and EL = E − ER.
The incoming and outgoing edges of the remote graph GR

that cross the boundary between local and remote graphs are
denoted as EI and EO, respectively, defined as follows:

EI = {(vl, vr) ∈ E|vl ∈ Vl, vr ∈ VR}
EO = {(vr, vl) ∈ E|vl ∈ Vl, vr ∈ VR}

Referring back to TITANIC’s design overview, the data flowing
through the edges in EI represents the intermediate results
during the forward pass in Figs. 1 and 2. Conversely, the data
from EO represents the gradients computed during backprop-
agation.

The Autograd Bridge aims to reconnect the subgraphs GL
and GR, transforming the local computation graph GL into
a complete one. To do so, it can be conceptually represented
by a special node b that takes control of all incoming and
outgoing edges to the remote graph:

Eb = {(vs, b)|(vs, _) ∈ EI} ∪ {(b, vt)|(_, vt) ∈ EO}.

The data exchange between GL and GR is defined as an inter-
nal operation within the node b. This allows the local compu-
tation graph to be transformed into GL = (VL∪{b}, EL∪Eb).
The presence of the Autograd Bridge b reestablishes the
connection within GL, resulting in a complete computation
graph. It conceals the fact that the subgraph GR was offloaded
to client ci’s downstream neighbor ci+1 for remote execution,
allowing the underlying framework — TITANIC uses PyTorch
— to train the local model as if it were a complete computation
graph.

During the fine-tuning process, an upstream client with its
local computation graph GL processes the input data until the
Autograd Bridge is reached. At this point, all the intermediate
results, including the input tensors EI directly involved in the
computation, as well as any auxiliary control information (e.g.,
attention masks in language models), are automatically sent to
the downstream client over the network (either using a direct
connection or via a relay server), which hosts the computation
graph GR. The Autograd Bridge at ci then waits for results
from its downstream neighbor ci+1. Once the gradients EO
have been received, local computation in GL on ci can proceed
to completion. Similarly, during backpropagation, when the
gradients EO have been back-propagated to the Autograd
Bridge in ci+1, these gradients are forwarded to its upstream
neighbor ci, allowing backpropagation to seamlessly continue
on the other side of the “bridge.”

There are two observations about such a design worth
noting. First, the design of the Autograd Bridge is sufficiently
general to divide the computation graph of any model into
multiple partitions, not just into two partitions GL and GR.
The local computation graph GL on a client ci, for example,
can (recursively) be a portion of GR from the viewpoint of ci’s
own upstream neighbor, ci−1. Second, such an information ex-
change between clients, involving both the intermediate results
and gradients, occurs solely within the computation graph.
PyTorch is completely oblivious of the network connections
within the Autograd Bridge, and there will be no manual
intervention or source code modifications at all.



Implementation challenges. With our design of the Auto-
grad Bridge, the primary challenge in its PyTorch implemen-
tation is how the backward() function can be overridden to
receive gradients from GR on ci+1 to GL on ci, without any
manual modifications to the model. To achieve this goal, we
introduce a ClientForwardFunction class that inherits from
PyTorch’s autograd.Function:

class ClientForwardFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, comm, desired_output, *grad_tensor_list):
ctx.comm = comm # saving the communication backend
return desired_output

@staticmethod
def backward(ctx, grad_output):
comm = ctx.comm # restoring the communication backend
# sending to the upstream client
comm.send(grad_output, fwd_flag=False)
# receiving from the downstream client
gradients = comm.recv()
return None, None, *gradients

This class saves and restores the communication backend
in the Autograd Bridge in its context. The communication
backend in the Autograd Bridge provides a simple API con-
sisting of only two functions, send() and recv(). For the best
compatibility, we implemented the communication backend
by using a relay server using the WebSockets protocol over
HTTPS, an industry standard for two-way communication.

Once defined, the ClientForwardFunction class can then
be applied in the forward() function of our customized
ClientModule class:

class ClientModule(nn.Module):
def forward(self, *args, **kwargs):
...
# sending to and receiving from the downstream client
self.comm.send(input_data, fwd_flag=True)
output_data = self.comm.recv()
desired_output = output_data

output_data = ClientForwardFunction.apply(
self.comm, desired_output, *grad_tensor_list

)
return output_data

What we have shown represents just a glimpse of the
implementation detail that made the Autograd Bridge feasible
without any source code modifications to both models and
their trainers. Since pre-trained LLMs are typically loaded
from HuggingFace’s model repositories using APIs such as
transformers.AutoModel.from_pretrained(), it is criti-
cally important to avoid any manual intervention if TITANIC
is to be used in practice.

V. OPTIMIZING CLIENT SELECTION

In conventional FL, it is routine to select a small number
of participating clients from a larger pool of candidates,
and existing client selection algorithms in the literature were
designed to mitigate data heterogeneity across clients and to
improve the speed of convergence. Though we may continue
to use these client selection algorithms in TITANIC, we shall
propose an orthogonal way of selecting clients with the same
objective of optimizing the training speed.

Recall that in Section III-D, we mentioned that the server
bandwidth may be an order of magnitude higher than client
bandwidth due to differences in network types. Following the
same logic, available bandwidth across clients can be one or
two orders of magnitude different as well. Our new client
selection algorithm takes such resource heterogeneity into
account, and seeks to optimize the training speed by choosing
faster clients with respect to both their available bandwidth
and computing resources, such as the amount of available GPU
memory. The general rule of thumb is to choose the fastest
possible clients in terms of bandwidth, yet with a sufficient
amount of GPU memory.

Rather than resorting to heuristics, we take a more disci-
plined approach and propose to formulate and solve an integer
optimization problem to find the optimal assignment of model
partitions to clients, which offers better performance than
assigning randomly or using simple heuristics. If we can solve
such an optimization problem efficiently, model partitions will
then be distributed more effectively and reasonably to each
client, with the hope of maximizing the training speed.

After dividing a large language model into partitions,
let us consider the problem of assigning model partitions
{Pk}k∈K to clients {Cn}n∈N , where K = {1, 2, . . . ,K}
and N = {1, 2, . . . , N} are the corresponding indexing sets,
and K and N correspond to the total number of model
partitions and clients, respectively. We define the training
time Tn = |wPk

|/Sn, where |wPk
| represents the number of

floating point operations in the model partition Pk, and Sn
denotes the computing performance on client n, in floating
point operations per second (FLOPS). The training time T kn ,
therefore, corresponds to the wall-clock time elapsed during
the local fine-tuning process. A client with more computational
resources will have a small T kn . Similarly, we define the
transmission duration, Dk

n = sPk
/Bn, where sPk

represents
the size of the model partition Pk in bytes, and Bn denotes
the bandwidth available to client n, in bytes/second.

To numerically represent the distance between the partition
Pk and client Cn, we define the match distance as dkn =
a · Dk

n + b · T kn , which is a weighted sum involving both
the transmission duration and training time, scaled by hyper-
parameters a and b. We then define the affinity between a
model partition and a client Akn = 1/dkn, and seek to maximize
the total of all affinities. In other words, we prefer to assign
model partitions to faster clients with shorter transmission
durations and training times.

Such a definition of affinity allows us to tell whether a
model partition is suitable for a client or not. For an arbitrary
model partition Pk, Ak1 ≥ Ak2 means that client C1 is a better
match for the partition than client C2 is, and we should assign
it to C1. At first glance, one may think that it suffices to
choose the client that results in the lowest match distance for
each partition. However, our problem is more subtle because
clients may have GPU memory constraints that block certain
assignments.

Formulating the optimization problem. We represent a
partition-client assignment using a vector α ∈ {0, 1}KN , α =



(α1
1, . . . , α

K
N ), where αkn = 1 if partition Pk is assigned to

client Cn, and 0 otherwise, and formulate our client selection
problem as the following:

max
αk

n

∑
k

∑
n

Akn · αkn (1)

s.t.

N∑
n=1

αkn = 1, ∀k ∈ K (2)

K∑
k=1

αkn ≤ 1, ∀n ∈ N (3)

αkn = 0, if Mn < |wPk
| (4)

αkn ∈ {0, 1}, ∀k ∈ K, ∀n ∈ N (5)

where constraint (2) implies that each partition can only
be assigned to one client, constraint (3) shows that each
client cannot host more than one partition, and constraints (4)
indicates that if operations in a partition k does not fit into the
available GPU memory Mn at client n, the assignment should
be avoided.

Transforming into an LP problem. Our integer opti-
mization problem is essentially the same formulation as in
Taylor’s work [20] with minor variations, such as the addition
of constraints that block assignments due to insufficient GPU
memory. Even though integer linear optimization problems
can be computationally difficult to solve, as Taylor pointed
out [20], the constraint matrix in this formulation is totally
unimodular, which implies that we can treat it as a linear
programming problem, and use a standard LP solver to solve
it. The LP relaxation — allowing αkn ∈ [0, 1] — does not
affect the integrality of the optimal solution, thanks to Meyer’s
seminal work [21]. Solving such a problem with an LP solver
at a small scale is surprisingly efficient: for example, the Mosek
solver took less than 40 milliseconds for 100 clients and 32
partitions. As a result of such efficiency, solving our proposed
optimization problem is a practical and a more disciplined
approach than designing heuristics.

Evaluation. In order to evaluate our proposed optimal
client selection algorithm by directly solving the optimization
problem we just formulated, we randomly generate 100 clients,
each with its amount of available GPU memory drawn from
[4, 8, 12, 16, 20, 24] using a normal distribution (with a mean
of 12 and a standard deviation of 6. The available bandwidth
of our clients is drawn from [0− 100] (Mbps) using a normal
distribution (with a mean of 50 and a standard deviation of
25), and their computing performance is similarly drawn using
a normal distribution from [5− 80] TFLOPS — ranging from
an NVIDIA RTX 2050 mobile to an RTX 4090 GPU — with
a mean of 40 and a standard deviation of 20. We assign a
small number of model partitions, each corresponding to one
or multiple layers in a Llama 2 model with 7, 13 and 70 billion
parameters.

We evaluate our optimal algorithm by comparing with two
simple heuristics: (1) a greedy algorithm that first assigns
the largest partition to the client with the lowest transmission
duration, and then assign to the second largest partition to the
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Fig. 5. Evaluating our optimal client selection algorithm against greedy and
random assignment heuristics.

client with the second lowest transmission duration, and so
on. (2) a random algorithm, which randomizes the assignment
of each partition to clients. Clients with insufficient GPU
memory will be excluded in both heuristics. From our results
shown in Fig. 5, we can conclude that though the greedy and
random heuristics performed reasonably well, the solution to
our optimization problem performed substantially better. Given
that running the LP solver takes less than 40 milliseconds on
a modern server for our largest model, our optimal selection
algorithm is a lightweight and practical alternative to existing
client selection algorithms in federated learning.

VI. PERFORMANCE EVALUATION

As a new distributed training paradigm for large language
models, evaluating TITANIC is somewhat unconventional:
since it is not necessarily a specific algorithm or mecha-
nism, there is no prior work in the literature to compare
with. Nevertheless, we attempt to showcase the practicality
and performance of our implementation of TITANIC in this
section, over a series of experiments involving three large
language models: OPT-1.3B [22], Bloom-3B [23], as well as
the cutting-edge Llama 2-7B [1]. We fine-tune these models
on the wikitext-2-raw-v1 dataset [24] containing 36,700
text samples, and observe the training loss as an indicator
of the fine-tuning progress. Our real-world implementation of
TITANIC uses PyTorch 2.0.1 and Python 3.10. All peer-to-peer
communication across clients is relayed through a WebSockets
node.js webserver.

For OPT-1.3B and Bloom-3B models, our fine-tuning pro-
cess with TITANIC was conducted on a cloud server with one
NVIDIA RTX A6000 GPU (with 48 GB of CUDA memory
and CUDA version 12.2). In contrast, as 48 GB of CUDA
memory is not sufficient for fine-tuning the Llama 2-7B model,
we conducted our experiments using a MacBook Pro computer
with an Apple M2 Max CPU, with 96 GB of unified GPU
memory. When fine-tuning, we chose batch sizes of 32, 16
and 4 for OPT-1.3B, Bloom-3B, and Llama 2-7B, respectively.
LoRA [2] has been used to allow parameter-efficient fine-
tuning in all our experiments.

Quality of the fine-tuned models. The most important
aspect of the fine-tuning process is the quality of the fine-
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tuned models. In Table II, we present a detailed comparison
study of the model perplexity between centralized training,
conventional FL, and TITANIC (with two and four clients).
Off the bat, a surprising yet important observation is that
conventional FL with Federated Averaging (FedAvg) failed to
work effectively, producing models of much worse quality (the
lower the perplexity, the better). FL with FedAvg produced
models that were even worse than using 1/4 of the data in
TITANIC with C1 only. We believe that this is attributed to
the use of LoRA for parameter-efficient fine-tuning in our
experiments: using FedAvg to compute the average of local
LoRA adapters will produce a shared adapter that performed
much worse. In contrast, TITANIC was able to obtain models
that were comparable in quality to centralized fine-tuning; and
unsurprisingly, using two clients — each with half of the data
— performed better than using four clients, each with 1/4 of
the data.

Convergence behavior. Beyond the quality of the fine-
tuned models, we are also interested in the convergence be-
havior at run-time. In Fig. 6, we compare TITANIC (again with
2 and 4 clients) with centralized training using the OPT-1.3B
and Bloom-3B models, respectively. As we expected, using
4 clients with TITANIC performed slightly worse than using
2 clients, but both were similar to centralized fine-tuning in
terms of their convergence behavior over multiple epochs.

Last but not the least, we fine-tuned the much larger
Llama 2-7B model to see if the convergence behavior may be
different from its smaller counterpart. Our results, illustrated
in Fig. 7, showed that due to the size of this model, training
loss rapidly converged to a very low value, which implied
that this model only needed a small number of data samples
to fine-tune successfully. Data from additional clients were
not really necessary. That said, this experiment showed that
TITANIC, with its design of the Autograd Bridge, was able to
seamlessly partition large language models of any size without
issues.

TABLE II
FINE-TUNING LLMS USING CENTRALIZED TRAINING, CONVENTIONAL FL

WITH FEDERATED AVERAGING, AND TITANIC.

Model Methods Perplexity

OPT-1.3B

Centralized 18.02
FL with FedAvg 34.01

TITANIC with 4 clients
C1 → C2 → C3 → C4

20.67 → 19.34 →
19.38 → 19.17

TITANIC with 2 clients
C1 → C2

18.77 → 17.23

Bloom-3B

Centralized 18.04
FL with FedAvg 30.24

TITANIC with 4 clients
C1 → C2 → C3 → C4

25.16 → 21.49 →
19.34 → 20.58

TITANIC with 2 clients
C1 → C2

19.68 → 19.20

Llama 2-7B

Centralized 2.54
FL with FedAvg 3.56

TITANIC with 4 clients
C1 → C2 → C3 → C4

2.90 → 2.80 →
2.93 → 3.34

TITANIC with 2 clients
C1 → C2

2.30 → 2.85
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(with 4 and 2 clients): fine-tuning the Llama 2-7B model.

VII. CONCLUDING REMARKS

Due to the enormous sizes of pretrained large language
models, it is an open problem and a formidable challenge
to fine-tune them collaboratively over multiple users, while
still preserving data privacy. Either conventional FL nor split
learning may be viable options in practice, as both the clients
and the server may not have sufficient amount of GPU
resources.

In this paper, we present TITANIC, a third alternative
that allows clients to collaboratively fine-tune a shared LLM
without the need of using GPU servers. The cornerstone of
TITANIC is the Autograd Bridge, which we implemented with
a focus on practicality, so that it works effectively with any
LLM, and without any source code modifications to the model
and its trainer. TITANIC is a distributed training paradigm that
can flexibly accommodate different communication patterns,
with or without server aggregation. We also proposed a client
selection algorithm that optimizes the assignment of model
partitions to clients without adding any complexity. Our per-
formance evaluations showed that TITANIC offers comparable
performance to centralized training.
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