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Most existing papers assume 
synchronous federated learning, but 
shouldn’t it be asynchronous?



server may choose to assign an aggregation weight of zero to
extremely slow clients, effectively reducing the relevance of
their local training.

Unfortunately, heuristics designed in existing works in the
literature reflected point solutions in such a design space, and
in several cases failed to motivate their design choices. In
particular, most existing works used either the number of gra-
dients, updates, or communication rounds before convergence
as their performance metric, which failed to reflect the actual
wall-clock time it takes to converge to a target accuracy. This
is because each update or communication round may take a
substantially different amount of time. As such, it is not clear
what the best possible trade-off between conflicting design
decisions is, and what the sweet spot is in the entire spectrum
between synchronous and asynchronous mechanisms.

In this paper, we seek to experimentally explore such a
design space in a real-world scalable FL research framework,
called PLATO, designed from the ground up to accurate
measure the wall-clock time involving all the factors at play.
With insights obtained from our experimental evaluations, we
propose PORT1, a new mechanism that navigates the tradeoffs
involved in the design space with best practices.

Highlights of our original contributions in this paper are
three-fold:

First, in PORT, the server incorporates a push-pull mecha-
nism: it allows fast clients to aggressively report their model
updates, and aggregates them as soon as a minimum percent-
age of clients arrive. Yet, it does not need to wait for stale
clients after the staleness bound has been reached; instead, it
aggressively pull these stale clients with an urgent notification.
Clients that receive such urgent notifications are required to
report immediately after completing the current training epoch.

Second, inspired by existing adaptive aggregation mecha-
nisms, we propose to assign lower aggregation weights to
clients that are more stale and more divergent in their model
updates. The intuition behind this design is that stale clients
are based on earlier versions of the global model, and their
model updates are therefore of lower quality and less relevant.
Theoretically, we show that our mechanism enjoys a conver-
gence guarantee.

Finally, the design of PORT is based on an array of exper-
imental evaluations using our real-world FL framework, with
an emphasis on reproducible results when comparing with the
state-of-the-art, using the wall-clock time as our performance
metric rather than the number of communication rounds. As
asynchronous paradigms are inherently designed to minimize
the wall-clock time, this is the only suitable way of evaluating
competing designs. With a variety of datasets and models, we
show that PORT is able to outperform all of its competitors in
the literature, and by a margin of up to 40% over its closest
state-of-the-art competitor in the literature.

The remainder of this paper is organized as follows. In Sec-
tion II, we first present necessary preliminaries and highlights

1PORT is a strong, sweet, typically dark red fortified wine, originally from
Portugal. It represents a sweet spot in our design space.
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Fig. 1. Synchronous vs. asynchronous mode of operation in federated
learning. Naturally, if the server operates in fully asynchronous mode, there
is no need to wait for slower clients to report before the aggregation process
to commence.

of related work. In Section III, we introduce an initial array
of experimental evaluations, showing how the design space is
to be explored with a range of tuning knobs to be adjusted. In
Section IV, inspired by our preliminary experimental results,
we present PORT, our proposed mechanism that arbitrates the
tradeoff in the design space, enjoys a theoretical convergence
guarantee, and achieves the sweet spot in the spectrum be-
tween two extremes of communication mechanisms. In Sec-
tion V, we first introduce new mechanisms we designed and
built to simulate wall-clock time and to substantially improve
reproducibility in PLATO, and then present an additional set of
experimental results to validate the effectiveness of our design
as compared to leading competitors such as FedAsync and
FedBuff. Finally, we conclude the paper with some further
remarks in Section VI.

II. PRELIMINARIES AND RELATED WORK

The synchronous mode of operation in federated learning
(FL) needs no introduction: most existing work in the literature
makes such an assumption: the server needs to wait for all the
clients it has selected in the current communication round (or
round) to report their model updates, before it proceeds with
the aggregation process. Just like Bulk Synchronous Parallel
parameter servers in the conventional design of distributed
machine learning on the same cluster, such synchrony across
selected clients in the same round is simple to implement and
enjoys proven convergence properties.

In practice, however, given a large number of clients in an
FL session, it is natural to assume client heterogeneity: differ-
ent edge devices as clients have a wide variety of computing
capabilities, and as such their local training performance varies
significantly. In fact, for the same amount of computation, their
training times may follow a heavy-tailed distribution (such
as Zipf distribution) rather than normal distribution, where a
small proportion of clients are much slower than the norm.
These slow clients were known as stragglers in distributed
machine learning, and they motivated operating the training
session in asynchronous mode.

Asynchronous federated learning. Figure 1 illustrates
the intuitive benefits of deploying asynchronous federated



Several existing papers in the literature

FedAsync

C. Xie, S. Koyejo, and I. Gupta, “Asynchronous Federated 
Optimization,” in Proc. NeurIPS Workshop on Optimization 
for Machine Learning (OPT), 2020.

FedBuff

J. Nguyen, K. Malik, H. Zhan, et al., “Federated Learning with 
Buffered Asynchronous Aggregation,” in Proc. ICML, 2021.
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Existing papers were point solutions 
in the design space for asynchronous 
federated learning



The design space



The minimum number of clients
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The minimum number of clients

The minimum number of clients required to report   
before the server starts to aggregate these clients
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The staleness bound

The staleness bound has been proposed in 
synchronous parallel mechanism (SSP): stale clients 
beyond a certain bound are waited for during the 
aggregation process

8



(a) Varying number of clients required before aggre-
gation.

(b) Varying bounds of staleness.
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(c) In the design space for asynchronous federated
learning, existing mechanisms were point solutions
but may not reflect the best possible operating point.

Fig. 2. Asynchronous vs. synchronous federated learning: comparisons and design space.

identifying influential factors that represent the staleness of
clients; once they are identified, PORT is designed to discount
the aggregation weights of stale clients accordingly.

A. Staleness: Influential Factors
It is natural to assume that much slower clients — who

received the global model from the server several rounds ago
— would become stale, and its model update may not be of
high quality during the aggregation process. In fact, such a
model update on a stale global model may even interfere with
the approximate consensus from most other clients, and slow
down the convergence process. Intuitively, we should reduce
the weight assigned to these stale clients during aggregation.

But such an intuition raises an important question: what are
the most important influential factors that best represent the
staleness of a client’s model update?

The staleness discount. The client staleness, defined as
the number of rounds that elapsed since the last time a client
received the global model from the server, arises as a natural
choice: the more stale a client is, the more discounted its
aggregation weight should become. Since PORT synchronously
waits for clients that exceed the staleness bound, the client
staleness will always be lower than such a bound. More
formally, if ⌧ is the current round at the server, and ⌧k is the
round that a reporting client k last received its model from
the server, client k’s staleness, Sk, is then ⌧ � ⌧k. We adopt
the following staleness function that computes the staleness
discount, which shall be used for discounting the aggregation
weights:

sk⌧ = ↵ ·
⌦

Sk + ⌦
(1)

where ⌦ is the staleness bound, defined formally as:

Definition 1 (Staleness bound). With the staleness bound of
updates, ⌦, the staleness Sk = ⌧ � ⌧k of any reporting client
k follows Sk

 ⌦.

Since Sk is upper bounded by ⌦, the staleness discount sk⌧
is lower bounded by 0.5. ↵ is considered a hyperparameter,

serving as a tuning knob to control how significant the
staleness discount should be in the aggregation process.

The interference discount. An important question at this
point is: is there another influential factor that represents the
staleness of client updates well?

Naturally, the result of server aggregation in the previous
round, i.e., w⌧ � w⌧�1 where w⌧ denotes the parameters
of the global model in the ⌧ -th round, represents the general
consensus of selected clients in that round. In the current round
⌧ , consider a client, k, who just reported a weight update
�k

⌧ . Intuitively, if �k
⌧ interferes significantly with the general

consensus w⌧ �w⌧�1, client k’s update may not be of high
quality and may need to be discounted during aggregation.

Mathematically, there are two ways of quantitatively eval-
uating a similarity measure between two vectors. One can
compute the dot product between �k

⌧ and w⌧ �w⌧�1, which
represents both the magnitude and the angle; alternatively, one
can compute the cosine similarity instead, which represents the
angle only.

In PORT, we choose to compute cosine similarity, denoted
as ⇥, to quantitatively evaluate interference. The lower ⇥ is,
the less similar the two vectors are. Since �1  ⇥  1, we
normalize it to [0, 1] by computing (⇥ + 1)/2 instead. The
interference discount is therefore defined as:

⇥k
⌧ = � ·

⇥
�
�k

⌧ ,w⌧ �w⌧�1

�
+ 1

2
(2)

where ⇥(A,B) is the cosine similarity between the two
vectors A and B. Similar to the staleness discount, we
introduce a hyperparameter �, serving as another tuning knob
to control how substantial the interference discount should be.

With both influential factors incorporated as discounts, and
assuming that each client k performs E training epochs based
on its local dataset Dk, the aggregation weight for each client
will then be computed as:

pk⌧ =
|Dk|

|D|

�
sk⌧ +⇥k

⌧

�
(3)



But are there sweet spots in the 
design space?
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(a) Varying number of clients required before aggre-
gation.
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(c) In the design space for asynchronous federated
learning, existing mechanisms were point solutions
but may not reflect the best possible operating point.

Fig. 2. Asynchronous vs. synchronous federated learning: comparisons and design space.

identifying influential factors that represent the staleness of
clients; once they are identified, PORT is designed to discount
the aggregation weights of stale clients accordingly.

A. Staleness: Influential Factors
It is natural to assume that much slower clients — who

received the global model from the server several rounds ago
— would become stale, and its model update may not be of
high quality during the aggregation process. In fact, such a
model update on a stale global model may even interfere with
the approximate consensus from most other clients, and slow
down the convergence process. Intuitively, we should reduce
the weight assigned to these stale clients during aggregation.

But such an intuition raises an important question: what are
the most important influential factors that best represent the
staleness of a client’s model update?

The staleness discount. The client staleness, defined as
the number of rounds that elapsed since the last time a client
received the global model from the server, arises as a natural
choice: the more stale a client is, the more discounted its
aggregation weight should become. Since PORT synchronously
waits for clients that exceed the staleness bound, the client
staleness will always be lower than such a bound. More
formally, if ⌧ is the current round at the server, and ⌧k is the
round that a reporting client k last received its model from
the server, client k’s staleness, Sk, is then ⌧ � ⌧k. We adopt
the following staleness function that computes the staleness
discount, which shall be used for discounting the aggregation
weights:

sk⌧ = ↵ ·
⌦

Sk + ⌦
(1)

where ⌦ is the staleness bound, defined formally as:

Definition 1 (Staleness bound). With the staleness bound of
updates, ⌦, the staleness Sk = ⌧ � ⌧k of any reporting client
k follows Sk

 ⌦.

Since Sk is upper bounded by ⌦, the staleness discount sk⌧
is lower bounded by 0.5. ↵ is considered a hyperparameter,

serving as a tuning knob to control how significant the
staleness discount should be in the aggregation process.

The interference discount. An important question at this
point is: is there another influential factor that represents the
staleness of client updates well?

Naturally, the result of server aggregation in the previous
round, i.e., w⌧ � w⌧�1 where w⌧ denotes the parameters
of the global model in the ⌧ -th round, represents the general
consensus of selected clients in that round. In the current round
⌧ , consider a client, k, who just reported a weight update
�k

⌧ . Intuitively, if �k
⌧ interferes significantly with the general

consensus w⌧ �w⌧�1, client k’s update may not be of high
quality and may need to be discounted during aggregation.

Mathematically, there are two ways of quantitatively eval-
uating a similarity measure between two vectors. One can
compute the dot product between �k

⌧ and w⌧ �w⌧�1, which
represents both the magnitude and the angle; alternatively, one
can compute the cosine similarity instead, which represents the
angle only.

In PORT, we choose to compute cosine similarity, denoted
as ⇥, to quantitatively evaluate interference. The lower ⇥ is,
the less similar the two vectors are. Since �1  ⇥  1, we
normalize it to [0, 1] by computing (⇥ + 1)/2 instead. The
interference discount is therefore defined as:

⇥k
⌧ = � ·

⇥
�
�k

⌧ ,w⌧ �w⌧�1

�
+ 1

2
(2)

where ⇥(A,B) is the cosine similarity between the two
vectors A and B. Similar to the staleness discount, we
introduce a hyperparameter �, serving as another tuning knob
to control how substantial the interference discount should be.

With both influential factors incorporated as discounts, and
assuming that each client k performs E training epochs based
on its local dataset Dk, the aggregation weight for each client
will then be computed as:

pk⌧ =
|Dk|

|D|

�
sk⌧ +⇥k

⌧

�
(3)

Varying number of clients 
required before aggregation 

Varying bounds of 
staleness 
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Port: our proposed mechanism
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(a) Evaluating the effects of hyperparameters ↵ and
� with the MNIST dataset.

(b) Evaluating the effects of hyperparameters ↵ and
� with the EMNIST dataset.

(c) Evaluating the effects of hyperparameters ↵ and
� with the CIFAR10 dataset.

Fig. 5. Evaluating the effects of hyperparameters ↵ and � with comparisons across-the-board in reproducible experiments.

(a) PORT vs. its competitors with EMNIST. (b) PORT vs. its competitors with CIFAR10. (c) PORT vs. its competitors with CINIC10.

Fig. 6. PORT (without urgent notifications) vs. FedBuff, FedAsync and federated averaging: a performance comparison with a focus on the staleness bound.

behaviour of aggregating the fastest client immediately as it
arrives, and partly due to the design of its own aggregation
algorithm. In fact, in Fig. 6c, we showed the results of using
PORT with a minimum number of clients of 1, and though it
didn’t perform well, it outperformed FedAsync substantially.

Though it is not a surprise that PORT outperformed syn-
chronous federated averaging in terms of wall-clock times
across all three datasets, the question whether it outperforms
FedBuff — with the same minimum number of clients —
needs a more detailed explanation. As FedBuff does not
wait for clients beyond a staleness bound, it effectively has
a staleness bound of 1. The question becomes, therefore,
whether having a staleness bound of 1 performs better than
having a limited staleness bound of, say, 10 (which is the
“sweet spot” we identified in Section III). For this reason,
we experimented with all three cases: FedBuff, PORT with a
staleness bound of 1, and PORT with a staleness bound of
10.

The verdict is in: with a staleness bound of 1, PORT
performed very similarly as compared to FedBuff, mostly
due to the fact that most of the client updates aggregated
are not stale. Both, however, suffered from the phenomenon
that when stale clients eventually arrive, they may affect the
accuracy of the model negatively for a few rounds. With a
staleness bound of 10, PORT performed quite visibly better

with all three datasets, and especially with EMNIST. With
this round of experiments, we are able to make the counter-
intuitive observation that, with respect to the wall-clock time,
it is worth imposing a reasonable staleness bound, even when
we need to wait for the slow clients to arrive.

PORT with urgent notifications vs. its competitors: the
finale. With all the results focused squarely on reproducibility
and fair comparisons across-the-board, we are now ready to
start measuring the actual training times, and turn on the push-
pull mechanism and urgent notifications in PORT. Our results
are shown in Fig. 7. With the CIFAR-10 dataset, PORT used
a low staleness bound of 3 so that urgent notifications can be
sent to a client when the staleness bound is reached. In this
scenario, PORT has clearly shown its forte: it took only 578
seconds to reach 50%, and 1125 seconds to reach 70%. In
comparison, its closest competitor, FedBuff, took 811 seconds
to reach 50% and 1311 seconds to reach 70%. This shows
that PORT enjoyed a performance margin of up to 40% over
FedBuff.

What about a higher staleness bound? With the CINIC-
10 dataset, PORT applied a staleness bound of 13, and we
observed that it progresses in a lock-step manner with FedBuff,
and only started to show a marginal advantage towards the
end of the convergence. As each client used only 3% of the
total samples for its training with the CINIC-10 dataset — as

Evaluating α and 
β with CIFAR10 
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behaviour of aggregating the fastest client immediately as it
arrives, and partly due to the design of its own aggregation
algorithm. In fact, in Fig. 6c, we showed the results of using
PORT with a minimum number of clients of 1, and though it
didn’t perform well, it outperformed FedAsync substantially.

Though it is not a surprise that PORT outperformed syn-
chronous federated averaging in terms of wall-clock times
across all three datasets, the question whether it outperforms
FedBuff — with the same minimum number of clients —
needs a more detailed explanation. As FedBuff does not
wait for clients beyond a staleness bound, it effectively has
a staleness bound of 1. The question becomes, therefore,
whether having a staleness bound of 1 performs better than
having a limited staleness bound of, say, 10 (which is the
“sweet spot” we identified in Section III). For this reason,
we experimented with all three cases: FedBuff, PORT with a
staleness bound of 1, and PORT with a staleness bound of
10.

The verdict is in: with a staleness bound of 1, PORT
performed very similarly as compared to FedBuff, mostly
due to the fact that most of the client updates aggregated
are not stale. Both, however, suffered from the phenomenon
that when stale clients eventually arrive, they may affect the
accuracy of the model negatively for a few rounds. With a
staleness bound of 10, PORT performed quite visibly better

with all three datasets, and especially with EMNIST. With
this round of experiments, we are able to make the counter-
intuitive observation that, with respect to the wall-clock time,
it is worth imposing a reasonable staleness bound, even when
we need to wait for the slow clients to arrive.

PORT with urgent notifications vs. its competitors: the
finale. With all the results focused squarely on reproducibility
and fair comparisons across-the-board, we are now ready to
start measuring the actual training times, and turn on the push-
pull mechanism and urgent notifications in PORT. Our results
are shown in Fig. 7. With the CIFAR-10 dataset, PORT used
a low staleness bound of 3 so that urgent notifications can be
sent to a client when the staleness bound is reached. In this
scenario, PORT has clearly shown its forte: it took only 578
seconds to reach 50%, and 1125 seconds to reach 70%. In
comparison, its closest competitor, FedBuff, took 811 seconds
to reach 50% and 1311 seconds to reach 70%. This shows
that PORT enjoyed a performance margin of up to 40% over
FedBuff.

What about a higher staleness bound? With the CINIC-
10 dataset, PORT applied a staleness bound of 13, and we
observed that it progresses in a lock-step manner with FedBuff,
and only started to show a marginal advantage towards the
end of the convergence. As each client used only 3% of the
total samples for its training with the CINIC-10 dataset — as

Port vs. its 
competitors 
with EMNIST



A new idea: push urgent notifications 
to slow clients
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Fig. 3. A fast client, A, reports its updates in time for aggregation, as one
of the minimum number of clients that the server waits for in this round. In
contrast, a slow client, B, has just exceeded its staleness bound. The server
sends an urgent notification to B and waits for its update after it finishes its
current epoch of training.

where D is the set of all data samples used in the set of
reporting clients, K, in this round. After normalizing all pk⌧
such that their sum becomes 1, the aggregation mechanism at
the server can then be formulated as:

w⌧+1 =
X

k2K

pk⌧w
k
⌧ (4)

B. Urgent Notifications and the Push-Pull Mechanism
In PORT’s design, we recognize that the aggregation algo-

rithm alone may not achieve the best possible performance
when it comes to the wall-clock time, rather than the number
of rounds. This is due to the fact that clients exceeding the
staleness bound must be waited for, and with a heavy-tailed
distribution of local training speeds, a small number of much
slower clients may become “stragglers,” increasing the amount
of time to converge to the target accuracy.

To mitigate the negative effects of these stragglers, the
server in PORT sends urgent notifications to all clients be-
yond the staleness bound ⌦. Upon receiving such an urgent
notification, a client will not proceed to the next epoch of local
training; instead, it sends its local model as soon as the current
training epoch finishes.

With such a design, in addition to clients pushing their
models to the server as in conventional FL mechanisms, PORT
allows the server to proactively pull the current models from
the client using urgent notifications. This becomes handy when
the server needs to wait for slow clients: rather than waiting
for all local epoches to finish on a slow client, the server only
needs to wait for the current epoch.

Keep in mind that both the minimum number of clients,
discussed at length in Section III is still applicable in PORT.
The server always waits for a minimum number of clients
to report; but with the push-pull mechanism in place, it will
also check whether any clients exceed the staleness bound.
If so, they will each receive an urgent notification from the

server. These urgent notifications introduce one more round-
trip between the server and the stale clients: the clients will
send their current models after they finish their current epoch
of training, and the server waits for all stale clients to report
before commencing its aggregation process including all the
reporting clients in this round. Fig. 3 illustrates how the server
waits for a push from a fast client, A, and pulls the update
proactively from a slow client, B.

C. Convergence Analysis

To analyze PORT’s convergence behavior, let us consider
the following theoretical context. In each round ⌧ 2 T
where T denotes the total number of rounds, the server
selects K 0 clients from C clients. Each client k performs
E training epochs based on its local dataset Dk and the
model, wk

⌧k , that it receives from the server in round ⌧k.
For any local training epoch j 2 [0, E], the local model
wk

⌧k,j+1 is obtained through optimizing wk
⌧k,j by using SGD

with a batch size of B and a learning rate of ⌘jl . This can
be formulated as wk

⌧k,j+1 = wk
⌧k,j � ⌘jl g(w

k
⌧k,j) where the

gradient g(wk
⌧k,j) = Ofk(wk

⌧k,j , D
k). Once K clients have

reported, the server commences the aggregation process.
In this context, our convergence analysis is conducted under

the following assumptions, which are commonly used in
previous works on the analysis of federated learning.

Assumption 1 (Smoothness). Each objective function fk of
the client k is L-smooth. Thus its derivatives are Lipschitz
continuous with constant L, i.e., k Ofk (w) � Ofk (w0) k

L k w �w0
k.

Assumption 2 (Unbiased local gradient). E⇠ [fk (w, ⇠)] =
Ofk (w), where w denotes trainable parameters.

Assumption 3 (Uniformly bounded local gradient). The ex-
pected squared norm of stochastic gradients is uniformly
bounded, i.e., E k Ofk (w, ⇠) k2 G2 for k = 1, . . . ,K.

Assumption 4 (Bounded local gradients). Let ⇠ be sampled
from the k-th device’s local data uniformly at random. The
variance of stochastic gradients in each device is bounded as
E⇠ k fk (w, ⇠) � fk (w) k2 �2

k for k = 1, . . . ,K. Then, we
define �2

l :=
PK

k=1
|Dk|
|D| �

2
k.

Assumption 5 (Bounded gradient divergence). For any client
k and the parameter w, we define �k as an upper bound of
k fk (w)� f (w) k2, i.e., k fk (w)� f (w) k2 �2k. Then, we
define �2g :=

PK
k=1

|Dk|
|D| �

2
k.

In essence, we are solving a generic optimization problem in
federated learning, but the updates in the server aggregation
process contain various gradient delays, i.e., Eq. (4). PORT
can be formulated as an asynchronous aggregation problem
with buffered updates, which was previously discussed in
FedBuff [8]. PORT’s push-pull mechanism with urgent no-
tifications also guarantees a staleness bound — as defined
in Definition 1 — to client updates. In addition, we mathe-
matically introduce a staleness discount by utilizing a client’s
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opposed to 10% with CIFAR-10 — this phenomenon can be
attributed to the observation that a staleness bound of 1 may
not be detrimental at all if local training completes quickly and
the turnover rate to new clients is high. In these situations,
PORT’s performance advantage over FedBuff may diminish,
as the effects of urgent notifications to stale clients take a
less significant role. It is also worth noting that due to the
randomness of measured training times, without activating the
reproducibility mode in PLATO, comparisons between close
competitors such as PORT and FedBuff can vary over different
datasets and runs. As compared to FedAsync (which failed to
converge) and federated averaging, however, it goes without
saying that PORT’s performance advantage is substantial with
both datasets.

Last but not the least, it is worth noting that, in contrast to
operating in a fully asynchronous mode — having a staleness
bound of 1 — in FedBuff, a finite staleness bound provides
a well-known and attractive theoretical property that training
will be guaranteed to converge [3]. Although FedBuff always

converged in our experiments, having a theoretical guarantee
offers additional peace of mind, as it is unlikely to experiment
with all potential combinations of parameter settings.

VI. CONCLUDING REMARKS

How asynchronous can federated learning be? Towards
providing a convincing and reproducible answer, we made
several original contributions in this paper. We first explored
the entire design space of asynchronous FL involving multiple
parameterized dimensions, and argued that an optimal region
of operation should involve proper design choices along each
of the dimensions. We then presented PORT, our proposed ag-
gregation algorithm that utilizes well-chosen operating points
in each of the dimensions in our design space, and with proven
convergence guarantees.

One of the highlights in our contributions is the ability
of simulating wall-clock times and improving reproducibil-
ity in our experiments, thanks to our new open-source FL
framework, PLATO, developed from scratch. We are able
to take advantage of such improved reproducibility during
PORT’s hyperparameter sweep, and to present PORT’s supe-
rior performance in wall-clock times compared to FedBuff,
FedAsync, and federated averaging. While we are confident
on PORT’s performance across new datasets and models, the
open-source and reproducible nature of PLATO opens up new
opportunities for pushing the performance envelope further
with new and improved designs in the future with convincing
and reproducible results.
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Port: Our Contributions

Adaptive aggregation mechanism based on 
staleness and cosine similarity

Urgent notifications pushed to the slow clients

Outperformed the state-of-the-art — FedBuff — in 
some scenarios
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