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Most existing papers assume
synchronous federated learning, but
shouldn’t it be asynchronous?
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(a) synchronous federated learning

selection

Client #1

Client #2

Client #3

Client #4

Client #5

Client #6

Client #7

Client #8

#1

synchronous
aggregation

#2

»O

#2

#3

#1
e—»(O

(b) asynchronous federated learning




Several existing papers in the literature

FedAsync

C. Xie, S. Koyejo, and |. Gupta, “Asynchronous Federated
Optimization,” in Proc. NeurlPS Workshop on Optimization
for Machine Learning (OPT), 2020.

FedBuff

J. Nguyen, K. Malik, H. Zhan, et al., “Federated Learning with
Buffered Asynchronous Aggregation,” in Proc. ICML, 2021.



Existing papers were point solutions

INn the design space for asynchronous
federated learning




The design space




The minimum number of clients



The minimum number of clients

The minimum number of clients required to report
before the server starts to aggregate these clients



The staleness bound

The staleness bound has been proposed In
synchronous parallel mechanism (SSP): stale clients
beyond a certain bound are waited for during the
aggregation process
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But are there sweet spots In the
design space?
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Port: our proposed mechanism
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Evaluating a and
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Port and other competitors
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A new idea: push urgent notifications
to slow clients
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Port: Our Contributions

Adaptive aggregation mechanism based on
staleness and cosine similarity

Urgent notifications pushed to the slow clients

Outperformed the state-of-the-art — FedBuff — In
some scenarios
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