How Asynchronous Should Federated
Learning Be?

Ningxin Su and Baochun Li

Edward S. Rogers Sr. Department of Electrical and Computer
Engineering

University of Toronto

Most existing papers assume
synchronous federated learning, but
shouldn’t it be asynchronous?

selection

Client #1

Client #2

Client #3

Client #4

Client #5

Client #6

Client #7

Client #8

synchronous

aggregation
® i >0
O
o1y O
° #2
o O
o> p o
[SaNg
5=

(a) synchronous federated learning

selection

Client #1

Client #2

Client #3

Client #4

Client #5

Client #6

Client #7

Client #8

#1

synchronous
aggregation

#2

»O

#2

#3

#1
e—»(O

(b) asynchronous federated learning

Several existing papers in the literature

FedAsync

C. Xie, S. Koyejo, and |. Gupta, “Asynchronous Federated
Optimization,” in Proc. NeurlPS Workshop on Optimization
for Machine Learning (OPT), 2020.

FedBuff

J. Nguyen, K. Malik, H. Zhan, et al., “Federated Learning with
Buffered Asynchronous Aggregation,” in Proc. ICML, 2021.

Existing papers were point solutions

INn the design space for asynchronous
federated learning

The design space

The minimum number of clients

The minimum number of clients

The minimum number of clients required to report
before the server starts to aggregate these clients

The staleness bound

The staleness bound has been proposed In
synchronous parallel mechanism (SSP): stale clients
beyond a certain bound are waited for during the
aggregation process

Aggregation
Weights

ASO-Fed

FedAsync

Staleness bound

But are there sweet spots In the
design space?

100 —(5:204 secsj\ k ;10: 302 secs]| 100 +—10: 216 secs]\ (10: 472 seci]*
(S 303 56) ‘ <
nc: 803 secs _ . :
(15: 236 secs] y 90 _ . 4: 520 secs | {1: 758 secs |
90 - g : (13: 294 secs]
1: failed to converge| 80 - :
"

2 S 1011
>, 60- > |
o O
© S go{ ¥
> > ;
8 E.
< 40- —e— Minimum clients=1 < 504 @ —e— Staleness bound =1

@ Minimum clients =5 5 - @+ Staleness bound=4

= %= Minimum clients =10 40 -] —-+%= Staleness bouna =7

20 - —€— Minimum clients = 15 | ——— Staleness bound =10
5 Synchronous 30 - Staleness bound =13
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700
Elapsed wall-clock time (seconds) Elapsed wall-clock time (seconds)

(a) Varying number of clients (b) Varying bounds of
required before aggregation staleness

Port: our proposed mechanism

Staleness

(2

Cosine similarity|Client’'s model update

(a\

/[

© (Aﬁ,wT — wT_l) + 1

'SkaLﬁ 2

)

13

Evaluating a and
B with CIFAR10

Accuracy (%)

/

0 400 800 1200 1600 2000 2400 2800 3200
Elapsed wall-clock time (seconds)

Port and other competitors

30 -
70 -
60 -
S s50-
Port vs. its S 0
competitors g
- < °Y —e— FedAvg
with EMNIST o e Fednut
- %= Port (staleness bound = =)
10 - —&— Port (staleness bound = 10)
FedAsync
O -

0 200 400 600 3800 1000 1200 1400 1600 1800
Elapsed wall-clock time (seconds)

A new idea: push urgent notifications
to slow clients

|

Urgent notification

start Incomplete -
epoch 2
next round | Updates

\ 4 Y
push-pull mechanism

—&— FedAvg
707 -4 FedBuff
-€9— Portw/ urgent notification
: 00 - FedA
Port (with . ok
Sy
urgent g
| u | —t
notifications) T 40-
vs. its 2.
competitors on
CIFAR-10 20-
10 -
0 150 300 450 600 750 900 1050 1200

Elapsed wall-clock time (seconds)

60 -
50
Port (with S 4
urgent 5\ .. %-- FedBuff
notifications) S -€- Port w/ urgent notification
- S > FedAsync
VS. ItS <
competitors on 20- /
CINIC-10
10 -

0 25 50 75 100 125 150 175 200
Elapsed wall-clock time (seconds)

Port: Our Contributions

Adaptive aggregation mechanism based on
staleness and cosine similarity

Urgent notifications pushed to the slow clients

Outperformed the state-of-the-art — FedBuff — In
some scenarios

21

Thank you

VAVAV,

