
Democratizing the Federation in Federated Learning
Ningxin Su, Student Member, IEEE, Baochun Li, Fellow, IEEE, Bo Li, Fellow, IEEE

Abstract—Federated learning (FL) is a widely acknowledged
distributed training paradigm that preserves the privacy of data
on participating clients, and has become the de facto standard
for distributed machine learning across a large number of edge
devices. Conventional FL, however, has a rather rigid design,
where the server is the dominant player that selects a subset
of its clients to participate in each communication round, and
clients are merely followers, and are not offered the freedom to
accept or decline invitations from the server to participate. In
addition, clients may become unavailable or very slow due to a
wide variety of reasons, yet it may take an excessive amount of
time for a conventional FL server to recognize that a particular
client is unavailable.

In this paper, we advocate for a more pragmatic paradigm
in federated learning, called democratic federated learning, to
offer more freedom to both servers and clients with respect
to the ability to accept or decline requests, and to explicitly
request to participate. In contrast to conventional federated
learning, our paradigm allows (1) both the server and clients
to participate and withdraw from the federated learning process
at any time; (2) the server to decide whether to reject clients’
updates based on the current model convergence steps, i.e., after
satisfying the minimum required clients’ updates received; and
(3) the clients to adjust the local epochs based on their own
training and communication time. Our experimental results on
a variety of datasets and models have confirmed that democratic
federated learning not only accelerates the convergence process
but also improves the accuracy of converged models, and serves
as a foundation for future explorations into client-centric models
within the FL ecosystem.

I. INTRODUCTION

In recent years, federated learning (FL) [1] has gained
prominence due to the advent of machine learning and the
growing emphasis on privacy. Federated learning represents
a paradigm of distributed machine learning, in which clients
perform local training iteratively in rounds, and the server
aggregates their model updates to obtain a shared global
model to be distributed back to the clients in the next round.
With federated learning, data is private to each client and not
disclosed to the server. In essence, federated learning employs
a client-server architecture, where the server is in charge of
selecting the subset of clients for training the shared model
in each round, and the clients are assumed to take a passive
role and to start training on-demand when they are selected.
Such a strong assumption prevents clients from declining or

Ningxin Su and Baochun Li are with the Department of Electrical and
Computer Engineering, University of Toronto. Their email addresses are
ningxin.su@mail.utoronto.ca and bli@ece.toronto.edu, respectively.

Bo Li is with the Department of Computer Science, Hong Kong University
of Science and Technology. His email address is bli@cse.ust.hk.

The research was supported in part by a RGC RIF grant under the contract
R6021-20, RGC TRS grant under the contract T43-513/23N-2, RGC CRF
grants under the contracts C7004-22G, C1029-22G and C6015-23G, and RGC
GRF grants under the contracts 16200221, 16207922 and 16207423.

disconnecting when they are chosen in each training round,
and disregards the heterogeneity and hardware performance of
clients. Additionally, once the server has selected the clients in
each training round, it must wait for all the clients to provide
their training results before proceeding to the next round.

Unfortunately, such a stringent assumption in conventional
FL is not typically valid in practice. First, clients may become
disconnected at any time owing to network or energy issues,
and the server cannot guarantee that it will receive the same
number of updates from all the selected clients in each round.
Second, the hardware heterogeneity across devices causes their
local training speed to vary substantially, and synchronous
designs with an equal number of local training epochs result in
an excessive amount of waiting time. Third, data on various
clients are diverse, and the statistical heterogeneity induced
by non-i.i.d. data causes the phenomenon of “model drift,”
where the trained model diverges across different clients. This
phenomenon will be worse if the server cannot select clients
based on historical information.

With the fundamental assumption that clients take a passive
role in conventional FL, clients do not enjoy any “rights” in the
working relationships between the clients and the server, which
are heavily skewed in favour of the server. Naturally, if clients
are required to use their local data and computing resources
forcibly without any reward, they are less likely to participate
and engage in the FL training process. In practice, a large
proportion of clients may not prefer to participate, due to a
lack of local computation resources or available data. However,
with appropriate incentive mechanisms in place [2], [3], some
clients may also be willing to join the FL training session.
Despite the fact that defense mechanisms have been designed
against a variety of data reconstruction attacks, and attempts
have been made to optimize FL-related workflows so as to
expedite the convergence of FL models, these improvements
have never taken the “rights” of clients into consideration.

In this paper, we propose the concept of democratic feder-
ated learning, which provides clients with the option to join an
FL training session on their own initiative, or decline the FL
server’s invitation to engage in the training session. Having the
freedom to join or to decline invitations from the server will
maximize the assurance that the clients have full autonomy
throughout the FL training session. If the server receives an
acceptance response from the client, it will return the current
global model, indicating that the client has joined training.
Although Anarchic FL [4] also provided more “rights” to the
clients, it only permits them to adjust their local steps, rather
than having the complete freedom of declining to participate
in the session.

In order to provide servers and clients with equal privileges,

and to allow clients to join the training session proactively,
we wish to allow the server to have the liberty of declining
such requests from a client as well. This is determined by a
client selection algorithm on the server, which may improve
the convergence speed and the converged accuracy of the
model [5], [6]. With the same degrees of freedom from both
perspectives of clients and the server, the training session is
inherently asynchronous: the server should not wait for all of
its selected clients to submit model updates before initiating
its aggregation. Instead, it should start aggregating as soon as
enough clients have reported their model updates.

Additionally, democratic federated learning employs vari-
able training epochs on the client side to further reduce the
time required for a client to complete one training round.
It has been observed that in federated learning, there are
clients with exceptionally long training times, which may
be due to limited computational power or insufficient mem-
ory. In synchronous federated learning, the round completion
time would be extended due to these slower clients, as the
server must wait for all clients to return their model updates.
However, this issue can also arise in asynchronous federated
learning because it tolerates stale model updates, meaning
the server will aggregate the model updates from several
rounds prior. Thus, clients that require more extended training
times may provide more outdated model updates, which might
not significantly aid the convergence of the global model.
Dynamically reducing the training epochs for these slower
clients, while maintaining the epochs for faster clients, could
intuitively accelerate the convergence process of federated
learning.

In the context of related work, the original contributions in
this paper are as follows.
• We propose a new paradigm, referred to as democratic

federated learning, that fundamentally changes the rules
that govern how FL clients and the server engage and
interact with each other. Clients can actively ask to join
the FL session and refuse the server’s request to join;
likewise, the server can invite or decline clients that
actively join the FL session based on their performance.
Thus, the clients and server are no longer required to
accept arriving requests, and can opt to accept or decline
based on their own current conditions.

• We propose a new algorithm that governs how both
the clients and the server process incoming requests in
the democratic federated learning paradigm. With our
new algorithm, the clients or server will asynchronously
proceed with training or aggregation, respectively, in a
parallel fashion, with the objective of optimizing the
amount of time it takes to converge and the accuracy
after convergence.

• We implement and evaluate our proposed algorithm in the
paradigm of democratic federated learning on PLATO,
an open-source framework for FL research that excels
at the task of comparing performance across-the-board.
Our evaluations span a variety of datasets and models,
and show that our algorithm outperforms state-of-the-art

asynchronous and anarchic FL algorithms with respect
to the wall-clock time needed for convergence, yet sup-
porting more realistic assumptions that both the clients
and the server are fully autonomous and driven by self-
interests.

II. PRELIMINARIES AND RELATED WORK

To date, only a small fraction of work has discussed the
relationship between clients and servers in federated learning.
Anarchic FL [4] was the first work that inspired researchers
to pay more attention to the right of clients to join FL freely.
Although it proved that the active participation of clients in
the asynchronous case helps convergence, it did not consider
the right of the server to select and reject clients. That is, if
an unsuspecting client wants to join an FL training session
actively, the anarchic server has no way of rejecting it. In
contrast, the work of Ruan et al. [7] has rigorously analyzed
the cases of clients’ refusal to join, dropouts and early de-
partures. However, Ruan et al. maintains the performance of
model convergence in synchronous FL by quickly notifying
other clients to restart.

Flexible worker participation is an alternative approach for
addressing client heterogeneity [8]. Flexible worker participa-
tion allows the server to select clients to participate in training
based on the client’s data distribution in each round. This
is able to filter out those clients that may negatively affect
the convergence of the shared global model, and allows the
shared global model to converge more quickly and to a higher
accuracy. Oort [5] shows that if we select clients with higher
local losses more favourably with higher probabilities, the
global model may converge faster during the training process.
Pisces [6], in addition to data utility, also incorporates client
staleness as a condition for client selection.

In order to further relax the strong assumptions on the
server side, many techniques can nevertheless guarantee model
convergence under the premise that the system is asyn-
chronous [9]. FedAsync [10] is the first to propose the concept
of asynchronous federated learning, but it aggregates each
incoming client update with the global model too aggres-
sively, and convergence is no longer guaranteed. Since then,
numerous works have focused on reducing the wall-clock
time of global model convergence. FedBuff [11] stores clients
arriving at different times in a buffer and controls the length
of the buffer to control the degree of asynchrony, which
corresponds to the minimum number of clients accumulated
at the server before asynchronous aggregation commences.
Port [12] not only considers the minimum number of clients
accumulated, but also assigns weights to clients with varied
model similarities during the aggregation process. Although
this step increases the aggregation bias, it decreases the global
model bias from the local model aggregation of non-i.i.d. data.

III. DEMOCRATIC FEDERATED LEARNING

In democratic federated learning (FL), we wish to provide
the server and clients with equal privileges. In particular,
we allow both clients and servers to accept and decline

membership in each communication round within the FL
training session. In this section, we integrate client selection
into the asynchronous FL training paradigm, and design a
highly flexible, practical democratic FL algorithm that offers
much more freedom to both the server and clients.

Client-Server Interaction. How could democratic FL be
implemented so that servers and clients can freely participate
and exit the training session at any time? Most of the existing
research on federated learning, beginning with McMahan et
al. [1], assumed that each communication round between the
client and the server is fully synchronous. With conventional
synchronous FL, the server selects a subset of clients, assigns
them a global model and a fixed number of local training
epochs, and the clients are required to proceed with local
training.

In our proposed algorithm, the server has three possi-
ble ways of interacting with a client: sending an invitation
proactively, accepting the client’s join request, or rejecting its
request. The first two actions cause the client to automatically
join a server-maintained list of participating clients. On the
other hand, clients also have three alternatives for providing
feedback: accepting an invitation from the server, applying to
join the FL session proactively, or declining to join the FL
session. When a client responds with a refusal to join, the
server is unable to add the client to its list of participants.
With this algorithm, before the server adds a client to the list
of participating clients, both the server and the clients must
agree that the other party may join the FL session. Similar
to the celebrated stable matching algorithm, the essence of
our algorithm is that the server and its clients would asyn-
chronously match each other’s requests, and clients must be
incentivized to join the FL session.

If a client’s join request is accepted by the server, or if
a client accepts a join invitation from the server, the server
then sends the shared global model to such a client, who
subsequently joins the current round of federated learning.
Our algorithm on the client side is more formally described in
Algorithm 2. Such communication regarding invitations and
requests must take place continuously between clients and the
server; therefore, in order to implement democratic federated
learning, the FL session must progress asynchronously.

Client Selection. When the list of participating clients
reaches a predetermined threshold capacity, the server initi-
ates client selection and sends the initial global model. The
democratic federated learning algorithm ensures a swift initial
client-server interaction, eliminating wait times in subsequent
rounds. In an asynchronous FL session, client training times
are crucial influential factors of the speed of model conver-
gence. A client’s training time is determined by the wall-clock
time elapsed since it last received the global model, which
includes the time it takes to communicate with the server.
The server records each client’s start time (when it sends the
initial global model) and completion time (when it receives
the client’s update), maintaining a list of client training times.
This enables accurate determination of client training times
upon their arrival.

Additionally, in democratic FL, the data quality of clients is
integral to the model’s training performance. High-quality data
from clients significantly boosts model accuracy by supplying
more informative inputs, which assist the global model to
capture patterns in the data distribution more effectively. Data
quality is measured using its statistical utility [5], defined
as the expected reduction in the global model loss with the
inclusion of a client’s data in the training process. Therefore,
with our algorithm, the server preferentially selects clients with
not only shorter training times but also higher data quality in
each training round, thereby optimizing the training process
and reducing the overall convergence time of the shared global
model.

Asynchronous System Settings. By default, the entire
democratic FL process is asynchronous. Because the server
must keep two lists in the FL process, allowing clients to
be able to join the FL session at any moment. In asyn-
chronous FL, there are two crucial indicators, the first of which
is the previously mentioned staleness, which represents the
communication and processing speed of a client. Specifically,
staleness is defined as a metric for the local model’s outdat-
edness, presenting how much the client update lags behind
the current global model. An update from a client with an
outdated model is less useful than updates from clients with a
smaller amount of staleness, and may even damage the global
model [12] due to the staleness of its update in asynchronous
FL. Another indicator is the minimal number of required client
updates before server aggregation in each round. The server in
FedAsync [10], for example, aggregates a client update once
it is received; this is way too aggressive and it may not be
able to converge to a global model with acceptable accuracy.
In democratic FL, the experimental results of Port [12] can be
directly utilized to determine the ideal minimum amount of
client updates.

Dynamic Number of Epochs on the Clients in Each
Round. To optimize for system heterogeneity in democratic
FL, we allow the server to vary the number of epochs at the
clients. This is achieved by limiting the staleness of clients as
much as possible while allowing more clients to participate.
This allows more data to be used for training, thereby avoiding
a potential degradation of accuracy in the aggregated global
model. To do this, the server should be capable of sending
a customized proposal to the slower clients, so that they can
stop training as soon as the current epoch completes. Such a
customized proposal to slower clients not only speeds up the
server’s aggregation process in each round, but also prevents
stale clients from wasting computational resources. With this
way of varying the number of local training epochs at each
of the clients, even slow clients can participate in the training
process actively, expanding the total volume of training data
used for democratic FL.

Algorithm Summary. The democratic FL algorithm begins
by engaging a set of C clients, where in each round τ , the
server distributes the global model ωτ and clients work on their
local models ωkτ . Clients possess datasets Dk, aggregating to
total D, essential for determining each client’s statistical util-

Algorithm 1 Democratic FL: server-side algorithm.
Require: The global model wτ in communication round τ ;

the local model wk
τ of client k at round τ ; the total clients

C; the number of clients for start-up FL C ′; the minimum
number of clients required for each round of aggregation
K; the selected clients per round K ′; the number of
invited clients V ; the number of received client updates
R; the minimum number of clients for sending proposal
S′; the number of proposals that server sending S; the
total number of data samples Dk on each client k; and
the total number of data samples D across all clients; the
list for stores all clients’ updates {Rτ}.

1: Wait for clients responses throughout entire FL mech-
anism. . .

2: while global accuracy < target accuracy do
3: Send the invitation to V clients
4: . V ≥ C ′
5: Receive invitation response or join request from k
6: if no recorded training times and data utility Nk then
7: Add Nk = None to ordered agreed clients set {C′}
8: . Clients in {C′} are sorted by the normalized

summation of clients’ duration and statistical utility [5].
9: end if

10: Start democratic FL session
11: Selected top K ′ clients to {K′} from start-up client

set {C′}. . |{K′}| ≤ C ′
12: for client k in {K′} do
13: Send global model wτ

14: end for
15: if receives client updates wk

τ then
16: Add wk

τ to {Rτ}
17: Update Nk to {C′}
18: end if
19: if |{Rτ}| ≥ S′ then . S′ < K
20: for client k in {K′ −Rτ} do
21: Send proposals to the top S clients from {K′}
22: end for
23: end if
24: if |{Rτ}| = K then
25: Do wτ+1 :=

∑
k∈K

|Dk|
|D| w

k
τ

26: . Aggregate K updates
27: end if
28: end while

ity. Initially, C ′ clients are selected randomly, and invitations
are sent to V clients, with those accepting joining the training
clients pool C′. The server later ranks these clients by their
statistical utility and training experience, sharing the global
model with top K ′ clients for the next round.

It should be noted that for clients lacking any prior inter-
action with the server, and thus without existing data on the
statistical utility or training times, selection occurs randomly
via a uniform distribution. This continues until the number of
clients which have recorded statistical utility and training times
reaches C ′. Subsequently, after the global model has been

Algorithm 2 DEMOCRATIC FEDERATED LEARNING —
CLIENT SIDE
Require: The client k; the global model wτ

1: Wait server’s invitation or send join request to the
server. . .

2: if Received wτ then
3: Do local training
4: if Received server’s proposal then
5: Finished current training epoch
6: end if
7: Return update wkτ to the server
8: end if

distributed to the training clients selected by the server, the
server waits for their updates. After a while, when the server
received updates to meet the number of clients’ updates N ′ to
trigger sending customized proposals, it chooses another top
N clients out of all those who have not yet returned updates in
the current round, and sends a customized proposal to remind
them to return their own updates once their current local epoch
is finished.

Finally, when the accumulation of client updates hits the
minimum number of request aggregation K, assumed here
as 10 according to FedBuff [11], the server initiates the
aggregation process. Therefore, the first round of FL only
aggregates 10 clients, triggering the commencement of the
second round. In this round, the server employs the normalized
summation of clients’ statistical utility and training times
to select k′ − K clients from {C′}. The number of clients
who were chosen (K ′) for training in the second round now
equals 20 once more. The described process repeats iteratively,
with the server fine-tuning the selection of clients based
on their responsiveness and utility until the global model’s
accuracy reaches the predetermined target. This methodology
not only streamlines the training process but also incorporates
a degree of flexibility and client autonomy, characteristic of
the democratic FL approach.

Key Differences from Related Work. Unlike previous
efforts, our proposed democratic FL gives servers and clients
the ability to freely enter and exit an FL training session. This
not only allows the server to select clients but also enables
both the server and clients to actively and simultaneously reject
requests to join. In practical scenarios, many clients may not
choose to engage due to insufficient computational resources
or data at their disposal. Although strategies have been de-
veloped to shield against various attempts at reconstructing
private data on the clients, and efforts have been made
towards speeding up model convergence, existing strategies
often overlook the clients’ interests and choices.

In order to ensure the final convergence of the global model
in such a free market, a well-designed algorithm must allow
the system to operate asynchronously. In democratic FL, the
status of clients is more diverse than in traditional FL. For
instance, client A requests to join FL, and the server agrees;
client B receives an invitation from the server and accepts it.

Both A and B appear to eventually contribute to the global
model, but the server has historical data on client B prior to
sending invitations to it, whereas client A may be an unknown
client. The likelihood of the server rejecting A’s join request
is greater than that of B in future rounds.

Anarchic FL [4] also allows clients to join actively and it
gives clients the right to choose different local epochs, but
does not account for the fact that the server, in practice, may
refuse the joining of stale clients for the convergence speed of
the global model. Also, it does not confer upon the server the
authority to alter the training epochs of clients; the server’s role
is solely to facilitate and expedite the convergence of the global
model. Therefore, from the server’s perspective, we have made
modifications to dynamic local epochs that are more aligned
with the server’s objectives, making democratic FL a “win-
win” solution for ensuring the interests of both servers and
clients.

IV. DEMOCRATIC FL: CONVERGENCE ANALYSIS

To allow both servers and clients the flexibility to participate
in the FL process, we first need to demonstrate the degree
of flexibility that democratic FL can permit for clients and
servers. Our intuition is that there is a bound for model conver-
gence; when the number of samples decreases significantly, the
model tends to fail to converge. However, convergence within
asynchronous FL is more complex, involving factors such as
epochs, staleness, and aggregation algorithms. In democratic
FL, both epochs and staleness are variable, and the aggregation
method involves averaging the received model parameters.
Based on the above, we first outline the assumptions needed
for our analysis.

Assumption 1 (Smoothness). Each objective function fk of
the client k is L-smooth. Thus its gradients are Lipschitz
continuous with constant L, i.e., ‖ grk (w) − g̃rk (w′) ‖≤ L ‖
w −w′ ‖,∀k ∈ [C], where grk denotes the gradient ∇fk and
g̃rk = E [grk].

Assumption 2 (Unbiased Local Gradient). Let ξk be sampled
from the k-th device’s local data uniformly at random. The
local stochastic gradient is unbiased, i.e., E

[
grk
(
w, ξk

)]
=

grk(w),∀k ∈ [C], where w denotes trainable parameters.

Assumption 3 (Bounded Local and Global Variances). Two
non-negative constants, denoted as σL and σG, can be found
such that the squared variance of each local stochastic gradi-
ent estimator is bounded by E

[∥∥grk (w, ξk)− grk(w)
∥∥2] ≤

σ2
L,∀k ∈ [C]; and the global gradient is bounded by
‖grk(w)− g(w)‖2 ≤ σ2

G,∀k ∈ [C].

In our exploration, we utilize the general partial participa-
tion framework from Horváth & Richtárik [13]. Within a client
set, a subset is chosen through a probabilistic method called
sampling (S). This mechanism selects from the potential 2n

subsets of [n]. Corresponding to each S is a matrix (P), where
the element Pij indicates the probability that clients i and j are
both in the sample. We can derive a vector, p = (p1, . . . , pn),
from P’s diagonal, representing individual client inclusion

probabilities. A sampling is termed proper if every pi > 0. The
expected number of participants in a communication round,
represented by b, is either the sum of vector values in p or the
trace of P. With probabilities ranging in [0,1] for each client,
the choice to include a client in S is independent of others,
a method labeled as independent sampling. Thus, we set pkr
as the participating probability of the client k in round r, and
there are Cr participating clients. In addition, let τkr denote the
staleness for client k at round r. And, q and j denote the index
of the local epoch while Q is the total local epochs. Thus, Qkr
is local epochs for client k at round r. Before performing
the convergence analysis on E [f (wr+1)] − f (wr), where
f (wr) =

∑
k pkf

(
wk
r

)
is the global objective and wr is

the global model in round r, we first introduce the following
lemmas.

Lemma 1. The expected divergence between the accumu-
lated local gradients Grk

(
wk
r

)
and G̃rk

(
wk
r

)
has an up-

per bound Qkr
∑Qkr−1
q=0 η2qσ

2
L, where ηq is the learning rate.

After considering the pk as the weight for each client,
the upper bound becomes

∑
k∈Cr

(
pkr
)2
Qkr
∑Qkr−1
q=0 η2qσ

2
L,

where Grk
(
wk
r

)
=
∑Qkr−1
q=0 ηqg

r
k

(
wk
r,q

)
, E

[
Grk
(
wk
r

)]
=

G̃rk
(
wk
r

)
=
∑
q ηq g̃

r
k

(
wk
r,q

)
.

Proof. Firstly, E ‖4‖2 = E
∥∥∥∑Qkr−1

q=0 ηq (grk − g̃rk)
∥∥∥2, where

4 = Grk
(
wk
r

)
− G̃rk

(
wk
r

)
. With Cauchy-Schwartz inequality,

the bound becomes Qkr
∑Qkr−1
q=0 η2qE ‖grk − g̃rk‖

2. The proof
can be completed after using Assumption 3. Similarly, we
have E

∥∥∑
k∈Cr p

k
r4
∥∥2 ≤ ∑k∈Cr

(
pkr
)2
E ‖grk − g̃rk‖. Thus,

by using the previous result and the Assumption 3, we can get
the upper bound.

Lemma 2. During each communication round, the expected
divergence in weights between wr and wr+1 has an upper
bound, represented as

L

2
E ‖wr+1 −wr‖2 ≤L

∑
k

(
pkr
)2
Qkr
∑
q

η2qσ
2
L

+L · E

∥∥∥∥∥∑
k

prG̃
r
k

∥∥∥∥∥
2

Proof. Firstly, 4 = wr+1 − wr =∑
k∈Cr p

k
r

(
−Grk

(
wk
r−τkr

))
. And we have the

summation of gradients which is denoted as

Grk

(
wk
r−τkr

)
=

∑Qk
r−τkr

−1
q=0 ηqg

r
k

(
wk
r−τkr ,q

)
. Therefore,

we get the following equations:

E ‖4‖2 = E

∥∥∥∥∥∑
k∈Cr

pkrG
r
k

(
wk
r−τkr

)∥∥∥∥∥
2

= E

∥∥∥∥∥∑
k∈Cr

pkr

(
Grk − G̃rk + G̃rk

)∥∥∥∥∥
2

≤ 2E

∥∥∥∥∥∑
k∈Cr

pkr

(
Grk − G̃rk

)∥∥∥∥∥
2

+ 2E

∥∥∥∥∥∑
k∈Cr

pkr G̃
r
k

∥∥∥∥∥
2

≤ 2
∑
k

(
pkr
)2
Qkr
∑
q

η2qσ
2
L + 2E

∥∥∥∥∥∑
k∈Cr

pkr G̃
r
k

∥∥∥∥∥
2

.

We introduce the zero term to obtain the first equation. And
the first inequality is obviously obtained, while the second
inequality is derived from Lemma 1. After multiplying both
sides by L

2 , we get the desired result.

Lemma 3. The divergence expectation between the global
weight wr in round r and the local weight wk

r−τkr
in round

r − τkr has the upper bound, represented as:

E
∥∥∥wr −wk

r−τkr

∥∥∥2 ≤ 2Γmax,k

r−1∑
t=r−τkr ∑

m∈Ct

(pmt)
2
Jmt

Jmt −1∑
j=0

η2jσ
2
L + 2E

∥∥∥∥∥ ∑
m∈Ct

pmt G̃
t
m (wm

t)

∥∥∥∥∥
2

where Γmax,k is maximum staleness for client k, Jmt is the
local epochs for client m at round t, ηj is the learning rate.

Proof. We can directly have the following equations:

E
∥∥∥wr −wk

r−τkr

∥∥∥2 = E

∥∥∥∥∥∥
r−1∑

t=r−τkr

(wt+1 −wt)

∥∥∥∥∥∥
2

≤τkr
∑
t

E ‖wt+1 −wt‖2 . Cauchy − Schwarz

=τkr
∑
t

E

∥∥∥∥∥ ∑
m∈Ct

pmt G
t
m (wm

t)

∥∥∥∥∥
2

⇓ Lemma2

≤2τkr
∑
t

∑
m

(pmt)
2
Jmt
∑
j

η2jσ
2
L + E

∥∥∥∥∥∑
m

pmt G̃
t
m

∥∥∥∥∥
2

⇓ τkr ≤ Γmax,k

≤ 2Γmax,k

r−1∑
t=r−τkr ∑

m∈Ct

(pmt)
2
Jmt

Jmt −1∑
j=0

η2jσ
2
L + 2E

∥∥∥∥∥ ∑
m∈Ct

pmt G̃m (wm
t)

∥∥∥∥∥
2

Lemma 4. Taking into account the staleness, the divergence
expectation between the gradient g (wr) and the accumulated
gradient G̃rk

(
wk
r−τkr

)
has an upper bound, represented as:

3L2
∑
k

(
pkr
)2
E
∥∥∥wr −wk

r−τkr

∥∥∥2︸ ︷︷ ︸
Lemma3

+3
∑
k

(
pkr
)2
σ2
G

+ 3
∑
k

(
pkr
)2
L2
[
5Qkr−τkr η

2
0

(
σ2
L + 6Q2

r−τkr
σ2
G

)
+30Qkr−τkr η

2
0

∥∥∇f (wr−τkr

)∥∥2]

where η0 is the initial learning rate.

Proof. We have4 = E
∥∥∥g (wr)−

∑
k∈Cr p

k
r G̃

r
k

(
wk
r−τkr

)∥∥∥2,
then

4 = E

∥∥∥∥∥∑
k∈Cr

pkrg (wr)−
∑
k∈Cr

pkr G̃
r
k

(
wk
r−τkr

)∥∥∥∥∥
2

≤
∑
k∈Cr

(
pkr
)2
E
∥∥∥g (wr)− G̃rk

(
wk
r−τkr

)∥∥∥2
=
∑
k

(
pkr
)2
E
∥∥∥g (wr)− g

(
wk
r−τkr

)
+ g

(
wk
r−τkr

)
−Grk

(
wk
r−τkr

)
+Grk

(
wk
r−τkr

)
− G̃rk

(
wk
r−τkr

)∥∥∥2
≤
∑
k

(pr)
2

[
3E
∥∥∥g (wr)− g

(
wkr−τkr

)∥∥∥2
+ 3E‖g

(
wkr−τkr

)
−Grk

(
wkr−τkr ‖

2

+ 3E
∥∥∥Grk (W k

r−τkr

)
− G̃rk

(
W k
r−τkr

)∥∥∥2]
≤ 3L2

∑
k

(
pkr
)2
E
∥∥∥wr −wk

r−τkr

∥∥∥2︸ ︷︷ ︸
Lemma3

+3
∑
k

(
pkr
)2
σ2
G

+ 3
∑
k

(
pkr
)2
E
∥∥∥Grk (wk

r−τkr

)
− G̃rk

(
wk
r−τkr

)∥∥∥2︸ ︷︷ ︸
41

(1)

The second inequality is obtained by using Cauchy-Schwarz(
12 + · · ·+ 12

)2 (
X2

1 + · · ·+X2
n

)
> (X1 + · · ·+Xn)

2 and
the final inequality is achieved based on L-smoothness and
bounded global divergence.

41 = E
∥∥∥Grk (wk

r−τkr

)
− G̃rk

(
wk
r−τkr

)∥∥∥2
= E

∥∥∥∥∥∥∥Grk
(
wk
r−τkr

)
−
Qk
r−τkr

−1∑
q=0

ηq g̃
r
k

(
wk
r−τkr ,q

)∥∥∥∥∥∥∥
2

Setting learning rates η0 > η1 > · · · > ηQk
r−τkr

>
1

Qk
r−τkr

≤ E

∥∥∥∥∥∥∥Grk(wk
r−τkr

)−
Qk
r−τkr

−1∑
q=0

1

Qk
r−τkr

g̃rk

(
wk
r−τk(r),q

)∥∥∥∥∥∥∥
2

=
1

Qk
r−τkr

∑
q

E
∥∥∥grk(wk

r−τkr
)− g̃rk(wk

r−τkr ,q
)
∥∥∥2

≤ L2

Qr′

∑
q

E
∥∥∥wk

r−τkr
−W k

r−τkr ,q

∥∥∥2
≤ L2

[
5Qkr−τkr η

2
0

(
σ2
L + 6Q2

r−τkr
σ2
G

)
+30Qkr−τkr η

2
0

∥∥∇f (wr−τkr

)∥∥2]
where the final inequality is obtained by using the proof in
page 14 of the work [4].

Eventually, when the staleness has an upper bound denoted
as ∀τkr ≤ Qmax, we have the theoretical convergence guaran-
tee and obtain an ergodic convergence rate.

Theorem 1. Given an initial learning rate η0 satisfying
η0 > 1

Qkr
, the global model iterates of our proposed algorithm

achieves the convergence rate:

O

(
K

1
2

Q
1
2
maxR

1
2

)
+O

(
Γ2
max

RQmax

)
+O

(
K2Q

1
2
max

R

)
+O

(
σ2
G

)
(2)

where Γmax is the maximum staleness, K is the largest number
of clients to be selected in each round, Qmax is the maximum
local epochs, and R is the total communication rounds. The
final term, O

(
σ2
G

)
, is introduced by potentially unbalanced

and biased client contributions.

Proof. Using L-smoothness, we have the following smooth-
ness inequality:

E [f (wr+1)] ≤ f (wr) + 〈g (wr) , E [wr+1 −wr]〉︸ ︷︷ ︸
4

+
L

2
E ‖wr+1 −wr‖2︸ ︷︷ ︸

Lemma2

(3)

where

4 =

〈
g (wr) , E

[∑
k∈Cr

pkr −Grk
(
wk
r−τkr

)]〉

= −E

[〈
g (wr) ,

∑
k∈Cr

pkrG
r
k

(
wk
r−τkr

)〉]

⇓ 〈a, b〉 =
1

2

(
‖a‖2 + ‖b‖2 − ‖a− b‖2

)
− 1

2
‖g (wr)‖2 −

1

2
E

∥∥∥∥∥∑
k∈Cr

pkr G̃
r
k

(
wk
r−τkr

)∥∥∥∥∥
2

+
1

2
E

∥∥∥∥∥g (wr)−
∑
k∈Cr

pkr G̃
r
k

(
wk
r−τkr

)∥∥∥∥∥
2

︸ ︷︷ ︸
Lemma4

(4)

Therefore, after introducing the Lemma 2, Lemma 3, and
Lemma 4 into Eq. 3, we get the E [f (wr+1)] − f (wr) as
follows:

− 1

2
‖g (wr)‖2 −

1

2
E

∥∥∥∥∥∑
k∈Cr

pkr G̃
r
k

(
wk
r−τkr

)∥∥∥∥∥
2

+ 3L2Γmax,k

r−1∑
t=r−τkr ∑

m∈Ct

(pmt)
2
Jmt

Jmt −1∑
j=0

η2jσ
2
L + 2E

∥∥∥∥∥ ∑
m∈Ct

pmt G̃
t
m (wm

t)

∥∥∥∥∥
2

+
3

2

∑
k

(
pkr
)2
σ2
G

+
3

2

∑
k

(
pkr
)2
L2
[
5Qkr−τkr η

2
0

(
σ2
L + 6Q2

r−τkr
σ2
G

)
+45Qkr−τkr η

2
0

∥∥∇f (wr−τkr

)∥∥2]
L2

2

∑
k

(
pkr
)2
Qkr
∑
q

η2qσ
2
L +

L2

2
· E

∥∥∥∥∥∑
k

prG̃
r
k

∥∥∥∥∥
2

(5)
Subsequently, we sum up the above inequality from round
r = 0 to round r = R and get

E [f (wR)]− f (w0) =

R∑
r=0

E [f (wr+1)]− f (wr)

Computing this summation leads to the final ergodic conver-
gence rate. The proof is done.

The obtained Theorem 1 gives us four insights into the
implementation and application of our proposed algorithm.
Firstly, our algorithm guarantees convergence under any stal-
eness as the second term decreases with the increase of the
communication round. Secondly, it ensures a fast convergence
when the local epochs of clients are changed and different.

In the extreme case, the first term O
(

K
1
2

Q
1
2
maxT

1
2

)
decreases

accordingly with the increase of Q. Even though the third
term increases with Q, the rate gradually decreases when the
communication round T increases. Thirdly, Eq. 2 shows that
involving more clients in each round of the training process
leads to a slower convergence rate. Specifically, choosing a
large K can significantly increase the first and third terms of

Eq. 2. In particular, the third term O
(
K2Q

1
2
max

T

)
has a higher

growth rate. This meets the practical scenario because when
more clients are involved in training, the data heterogeneity
and staleness situation introduce more challenges in the model
update and aggregation. Finally, increasing the maximum local
update Qmax to allow clients to perform more local updates
on the model may not always lead to a better convergence
rate. This is attributed to the fact that the number of clients
K cooperates with Qmax to determine the convergence rate
simultaneously. For example, a large Qmax leads to the lower
values of the first two terms of Eq. 2. However, the third term
may increase significantly due to the K2 multiplied by Qmax.

In addition, Theorem 1 also exposes the importance of
selecting proper K and Qmax for the model training under
the federated paradigm that suffers from staleness concern.
With a constant local update, involving fewer clients in the
training leads to a better convergence rate. However, sub-
stantially increasing the local epochs does not guarantee a
faster convergence rate, as the increase in K2 within the third
term can exacerbate the convergence when Qmax is large.
This analysis suggests that optimizing the practical application
of our algorithm requires a balanced consideration of model
quality, the number of local updates, and client participation.

V. PERFORMANCE EVALUATION AND COMPARISONS

With our new paradigm of democratic FL, the algorithms
need to be designed on both the clients and the server to
make adequate decisions on whether invitations from the other
side should be accepted or declined. By providing a greater
degree of autonomy to both clients and the server, we wish to
balance convergence speed and autonomy. The design of these
algorithms affects the convergence behaviour of the entire
FL training session, and the time it takes for the model to
converge should be empirically evaluated in our comparison
of algorithms.

In our experimental setup, we established a pool of 100
clients, from which a subset of 20 clients were selected for
participation in each training round. Due to the asynchronous
mode of operation, only 10 clients were actively involved in
the aggregation process during each round. For experiments
involving the CIFAR-10 dataset paired with the ResNet-18
model and the CINIC-10 dataset with the VGG-16 model, we
utilized a NVIDIA RTX A4500 GPU, boasting 20 GB of
CUDA memory and operating on CUDA version 11.7. In
addition, for the MNIST and Federated Extended MNIST
datasets, training was executed on an Apple M2 Max CPU,
featuring 96 GB of unified memory. The data distribution
across clients adhered to a non-independent and identically

distributed (non-i.i.d.) scheme, orchestrated via a Dirichlet
process with a concentration parameter set to 1.

In our performance comparison, we have comprehensively
tested several asynchronous algorithms across four distinct
datasets. Asynchronous algorithms are characterized by their
variability since they guarantee only a minimum number of
clients joining aggregations per round, leading to somewhat
fluctuating convergence curves. Particularly notable were the
performance of Asynchronous FedAvg and FedBuff. These
two algorithms are fundamentally simplistic and differ pri-
marily in their aggregation methodologies. While the FedAvg
algorithm employs a weighted average based on the number
of data samples, FedBuff aggregates based on the number
of participating clients. Observations from the MNIST and
FedMNIST datasets, which utilize the relatively uncomplicated
LeNet-5 models, revealed that the performances of FedBuff
and FedAvg were nearly identical.

Oort and Pisces slightly outperformed FedAvg and FedBuff,
likely because they select clients based on data quality rather
than at random. Oort calculates the sum of squares over
each sample’s loss and, considering clients’ training time,
has devised sophisticated methods for adding or removing
clients from the pool. Pisces altered the computation of model
loss for client selection with metrics like data utility and
staleness, which indicates the age of the clients’ models
relative to the current global model round. Both Oort and
Pisces maintain a blacklist for subpar clients, excluding them
permanently from selection. democratic FL also employs a
similar “blacklist” concept. However, it not only excludes
underperforming clients but also those who refuse to join
the server’s training sessions, thus protecting their autonomy.
Democratic FL selects clients based on the highest statistical
utility and shortest training and communication time, which
has proven beneficial for the algorithm based on performance
comparisons with its competitors.

The performance gap between democratic FL and its
competitors was more pronounced with the more complex
CIFAR-10 dataset using ResNet-18. Here, FedAvg and Fed-
Buff fared the worst, with very similar convergence curves.
Pisces showed slightly faster convergence than FedAvg and
FedBuff but still exhibited an unstable trend, which is always
happening in asynchronous settings. Surprisingly, democratic
FL demonstrated an accuracy rate which grows much faster
than Oort, despite having similar curves.

Our hypothesis considered a scenario where clients could
decline participation in FL training. When servers send global
models to these non-participatory clients, a substantial amount
of network bandwidth cost is incurred, leading to a longer
training session. Democratic FL proactively sends invitations
to preferred clients and accepts requests from those willing to
join before training begins, effectively pre-selecting available
clients. In our experimental setup, available clients were set
to 90% of the total, with server-invited clients and those
wishing to join training each accounting for 80% of the total.
Decreasing these parameters would increase the advantages
of democratic FL, and in real-world settings, values of these

50 100 150 200 250 300 350 400 450 500
Elapsed time (s)

60

70

80

90

Ac
cu

ra
cy

 (%
)

Async FedAvg
FedBuff
Oort
Pisces
Democratic FL (Ours)

(a) Training LeNet-5 on MNIST

0 600 1200 1800 2400 3000 3600 4200 4800 5400
Elapsed time (s)

10

20

30

40

50

60

Ac
cu

ra
cy

 (%
)

Async FedAvg
FedBuff
Oort
Pisces
Democratic FL (ours)

(b) Training LeNet-5 on FedMNIST

0 600 1200 1800 2400 3000 3600 4200 4800
Elapsed time (s)

10

20

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

Async FedAvg
FedBuff
Oort
Pisces
Democratic FL (ours)

(c) Training ResNet-18 on CIFAR-10

0 200 400 600 800 1000 1200 1400 1600 1800
Elapsed time (s)

10

15

20

25

30

35

40

45

Ac
cu

ra
cy

 (%
)

Async FedAvg
FedBuff
Oort
Pisces
Democratic FL (Ours)

(d) Training VGG-16 on CINIC-10

Fig. 1. DEMOCRATIC FEDERATED LEARNING vs. its competitors: a performance comparison with the MNIST, FedMNIST, CIFAR-10 and CINIC-10, and a mild
non-i.i.d. Dirichlet data distribution.

parameters would not be as high as in our experiments.
Furthermore, democratic FL incorporates an urgent noti-

fication mechanism that enables the server to modify the
number of training epochs for the clients. When the server
receives a certain number of model updates, which is typically
set to be less than the minimum number of client updates
required for server aggregation, it sends a notification to the
remaining clients which are still in training. This notification
instructs them to return their model updates after completing
their current epoch, rather than completing the pre-established
number of epochs. This mechanism further reduces the time
required for a client to complete a round of training on
the client side. Moreover, as the server has already received
a substantial portion of the model updates of client, for
instance, 70% of the minimum number required for server
aggregation, the precision of the aggregated model is not
compromised even if the remaining updates have fewer epochs
than initially specified. On the contrary, the overall progress
of each federated learning round is expedited by the slower
clients forgoing the full number of prescribed training epochs.

Regarding the CINIC-10 dataset with VGG-16, the per-
formance of the five asynchronous algorithms was similar.
Democratic FL consistently had the fastest convergence rate,
followed by Pisces, FedBuff, Oort, and lastly, FedAvg. We
speculate that FedAvg’s subpar performance could be due to
it aggregating fewer data samples per round in asynchronous
settings compared to the synchronous FL. FedBuff, designed
for asynchronous mode and using client counts as weighted
averages, is less affected by asynchronous conditions. While
Oort and Pisces also consider client selection, accelerating
convergence further, they do not account for client rights,
with clients fully controlled by the server. Democratic FL,
on the other hand, offers clients the freedom to follow their
own will, actively joining or declining FL training, making it
more prepared for practical implementation.

VI. CONCLUDING REMARKS

In this paper, we proposed democratic federated learning, a
new approach that substantially redesigned the way that clients
and the server interact with each other in federated learning.
With democratic federated learning, both clients and the server
are on equal footing with the same privileges, and have the
freedom to decline the other party’s requests. Our experimental

results across various datasets illustrate that democratic FL
surpasses existing asynchronous methods in both convergence
speed and model accuracy. The client selection algorithm
central to democratic FL effectively harnesses client autonomy
and computational resources, leading to more efficient training
rounds. Our proposed algorithm encourages more practical
deployment of federated learning, as only motivated and high-
quality clients would participate in FL training sessions.

REFERENCES

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-Efficient Learning of Deep Networks from Decentral-
ized Data,” in Proc. Artificial Intelligence and Statistics (AISTATS),
2017.

[2] Y. Zhan, J. Zhang, Z. Hong, L. Wu, P. Li, and S. Guo, “A Survey of In-
centive Mechanism Design for Federated Learning,” IEEE Transactions
on Emerging Topics in Computing, 2021.

[3] D. Yang, G. Xue, X. Fang, and J. Tang, “Crowdsourcing to Smartphones:
Incentive Mechanism Design for Mobile Phone Sensing,” in Proc. Inter-
national Conference on Mobile Computing and Networking (MobiCom),
2012, pp. 173–184.

[4] H. Yang, X. Zhang, P. Khanduri, and J. Liu, “Anarchic Federated
Learning,” in Proc. International Conference on Machine Learning
(ICML). PMLR, 2022, pp. 25 331–25 363.

[5] F. Lai, X. Zhu, H. V. Madhyastha, and M. Chowdhury, “Oort: Efficient
Federated Learning via Guided Participant Selection,” in Proc. Sympo-
sium on Operating Systems Design and Implementation (OSDI), 2021,
pp. 19–35.

[6] Z. Jiang, W. Wang, B. Li, and B. Li, “Pisces: Efficient Federated
Learning via Guided Asynchronous Training,” in Proc. ACM Symposium
on Cloud Computing (SoCC), 2022.

[7] Y. Ruan, X. Zhang, S.-C. Liang, and C. Joe-Wong, “Towards Flexible
Device Participation in Federated Learning,” in Proc. International
Conference on Artificial Intelligence and Statistics (AISTATS). PMLR,
2021, pp. 3403–3411.

[8] T. Nishio and R. Yonetani, “Client Selection for Federated Learning with
Heterogeneous Resources in Mobile Edge,” in Proc. IEEE International
Conference on Communications (ICC). IEEE, 2019, pp. 1–7.

[9] D. Avdiukhin and S. Kasiviswanathan, “Federated Learning under
Arbitrary Communication Patterns,” in Proc. International Conference
on Machine Learning (ICML). PMLR, 2021, pp. 425–435.

[10] C. Xie, S. Koyejo, and I. Gupta, “Asynchronous Federated Optimiza-
tion,” in Proc. NeurIPS Workshop on Optimization for Machine Learning
(OPT), 2020.

[11] J. Nguyen, K. Malik, H. Zhan, A. Yousefpour, M. Rabbat, M. Malek,
and D. Huba, “Federated Learning with Buffered Asynchronous Aggre-
gation,” in Proc. International Conference on Artificial Intelligence and
Statistics (AISTATS). PMLR, 2022, pp. 3581–3607.

[12] N. Su and B. Li, “How Asynchronous can Federated Learning Be?” in
Proc. International Symposium on Quality of Service (IWQoS), 2022.

[13] S. Horváth and P. Richtárik, “A better alternative to error feed-
back for communication-efficient distributed learning,” arXiv preprint
arXiv:2006.11077, 2020.

	Introduction
	Preliminaries and Related Work
	Democratic Federated Learning
	Democratic FL: Convergence Analysis
	Performance Evaluation and Comparisons
	Concluding Remarks
	References

