
Multi-Server Stable Rendezvous
for the Metaverse

Ningxin Su, Baochun Li
Department of Electrical and Computer Engineering

University of Toronto

Bo Li
Department of Computer Science and Engineering

Hong Kong University of Science and Technology

1

Multi-Server Stable Rendezvous

for the Metaverse

F

Abstract—When the real world and the digital world meet, they create

a shared virtual space called the metaverse, involving multiple virtual

communities in which users interact with one another in a highly im-

mersive and interactive fashion. Due to the pressing need for scalability

when handling millions of users in the metaverse regardless of the

applications and services provided, it is imperative to deploy multiple

servers across geographically distributed datacenters around the world.

In this paper, we envision, design, and implement a new rendezvous

service between a large number of users and a collection of geo-

graphically distributed servers, taking into account the latencies and

pair-wise network bandwidth between the users and the servers, as

well as bandwidth and processing capacity constraints on the servers

themselves when handling the users. Our new rendezvous service is

designed with simplicity and efficiency as its primary objective, and uses

a revised design of the Deferred Acceptance algorithm to guarantee a

stable matching between the users in the metaverse and its servers.

As a case study, our rendezvous service has been implemented in the

context of a federated learning application.

1 INTRODUCTION

The metaverse is a shared virtual place generated by the
confluence of the physical and digital universes. People, orga-
nizations, and information can interact in a highly immersive,
interactive, and multi-dimensional environment. Due to recent
technological advances in virtual and augmented reality [1], a
notion that has been pondered in science fiction for decades is
now becoming a reality. Users can create and design their own
avatars to communicate with others, explore virtual locations, and
engage with one another in a wide variety of applications [2].
With such an engaging virtual environment, the metaverse has the
potential to facilitate new communities in which large numbers of
users participate to play, work, socialize, educate, and to explore
mutual interests in general in a highly engaging fashion. These
communities may include virtual concerts, sports events, games,
business meetings, and classrooms, as well as any other forms of
interactive storytelling.

One of the most fundamental characteristics of the metaverse
is the sheer scale of its concurrently active users. Even in their
infancy, current virtual worlds, such as Roblox and Fortnite, are
already used by hundreds of millions of users.1 As has been well
recognized in the context of web services, such a large number
of users in the metaverse can only be adequately served with a
collection of servers that are hosted at geographically distributed
datacenters around the world.

1. Key metaverse statistics are available online at https://www.luisazhou.
com/blog/metaverse-statistics/.

Educate Work

Maximum processing
capacity on the number
of communities

Socialize
PlayCommunities

Geographically
Distributed
Servers

Users

Communities hosted at the servers Network latency and link bandwidth

... ...

Server bandwidth
capacity

Fig. 1. A variety of preferences involving network latencies and link

bandwidth, as well as constraints involving bandwidth and processing

capacities at the servers, need to be considered when designing a

new rendezvous service of matching users to geographically distributed

servers around the world.

With such a pressing need for scalability in the metaverse,
as well as the ensuing demand for deploying a collection of
geographically distributed servers, a practical technical challenge
naturally arises: Which server should be used to serve a particular
user, and more generally, how should a large number of users be
matched to a small number of servers serving the metaverse? In
conventional web services, a web client typically chooses an edge
Content Distribution Network (CDN) server that is the closest
with respect to rather crude estimates of network latencies using
the Domain Name Service and the client’s IP address. Though
such a simple solution is fully decentralized and more scalable, it
does not consider the processing and bandwidth capacities on the
servers, pair-wise network link bandwidth between clients and the
servers, as well as potentially more accurate real-time estimates of
network latencies.

In the context of the metaverse, however, it has been com-
monly accepted that network latencies and available bandwidth
between a user and its server are much more crucial than conven-
tional web services. In fact, latencies and achievable throughput
are so important that user experiences with some metaverse
applications may be severely downgraded to the point that they
may not be functional. Such emphasis on network latencies and
achievable throughput motivates a more metaverse-centric design,
where user-server matching decisions are produced by a new
rendezvous service, using up-to-date, and therefore more accurate,
estimates of pair-wise latencies and available bandwidth between
metaverse users and their servers.

Objectives
2

Educate Work

Maximum processing
capacity on the number
of communities

Socialize
PlayCommunities

Geographically
Distributed
Servers

Users

Communities hosted at the servers Network latency and link bandwidth

... ...

Server bandwidth
capacity

Fig. 1. A variety of preferences involving network latencies and link

bandwidth, as well as constraints involving bandwidth and processing

capacities at the servers, need to be considered when designing a

new rendezvous service of matching users to geographically distributed

servers around the world.

account community interests of the metaverse users, capacities
on the servers, as well as link latencies and bandwidth between
the users and the servers. Such a decentralized solution should
also be sufficiently general and applicable to a wide variety of
applications in the metaverse.

To achieve such an objective, we propose to use a revised
design of the deferred acceptance algorithm to produce a sta-
ble matching between the metaverse users and their servers,
without violating the server capacity constraints. Our proposed
algorithm is both simple and decentralized in nature, and enjoys
a polynomial-time complexity just as the conventional deferred
acceptance algorithm for the college admissions problem [3]. Due
to the importance of link-level pair-wise network latencies and
bandwidth between the users and the servers in the metaverse, our
algorithm prioritizes them over resource utilization on the servers.

Our original contributions in this paper are three-fold. First,
we propose a new rendezvous service between a large number
of metaverse users and their servers to improve the scalability of
metaverse applications, especially when multiple virtual commu-
nities need to be simultaneously supported, each consisting of its
own group of users. Second, given the significance of network la-
tencies and available bandwidth in metaverse-centric applications,
we propose a scalable and simple user-server matching algorithm
based on deferred acceptance, which can be implemented in a
fully decentralized fashion, and show that the matching it pro-
duces is stable. Finally, We demonstrate the performance of our
algorithm by training globally shared machine learning models
using federated learning (FL) [4], a privacy-preserving distributed
training mechanism, as a case study. In our experiments, we
simulate the communication between users and servers during
FL sessions and varying network environments in the metaverse,
using the MNIST and CIFAR-10 datasets for image classification
tasks. Our experimental results show that, in cases of large-scale
concurrent users and dynamic network environments, periodically
running our rendezvous matching algorithm has minimal impact
on our tasks due to its simplicity.

2 PRELIMINARIES AND RELATED WORK
Scalability. Constructing large-scale network topologies that

connect users to a number of servers in geographically distributed
datacenters is required for the sake of better scalability, which has

been widely recognized as one of the fundamental challenges in
the metaverse [1], [5]. This is particularly the case for the meta-
verse, where millions of users are expected to interact with one
another within the confines of virtual communities. At the same
time, metaverse applications have exacting requirements for ultra-
high network bandwidth and ultra-low network latencies. While
discussions of the specifics of how a real-world metaverse network
may be engineered to meet these requirements — with better
congestion control algorithms or better utilization of the wireless
spectrum with beyond 5G technologies, for example — it is worth
noting that both available bandwidth and network latencies in real-
world metaverse networks tend to vary over time in practice. In
this paper, we focus on designing a decentralized algorithm to
construct the network topology between metaverse users and their
servers, with the reasonable assumption that network latencies
and available bandwidth can be readily measured (or predicted
using historical estimates) between each individual user and all
the servers in the metaverse.

Metaverse communities. The concept of having virtual com-
munities in the metaverse is quite intuitive: consider a virtual
3D world with multiple gathering locations, both indoors and
outdoors, that a user can roam to and start interacting with
other users at the same virtual location. Existing literature on the
metaverse has also made it clear that metaverse communities are
important for self-governance, forming an autonomous Code of
Conduct that can be enforced using blockchain technologies [5].
A community can also take the form of a sub-metaverse [5], each
of which can offer various kinds of goods and services, such as
gaming, social dating, online venues such as museums, and online
events such as concerts. In this paper, the term community has
general connotations that can represent either sub-metaverses [5],
virtual locations in a 3D world [1], or virtual environments.

On the one hand, at any given moment, it is reasonable to
assume that a user may only be engaged in one activity in the
metaverse — such as working or playing a game — which implies
that each user can only participate in one community at any
given time. On the other hand, as we are deploying a small
number of servers in geographically distributed datacenters to
serve a large number of users, it is straightforward to observe
that each server has a maximum bandwidth capacity when serving
their users in the metaverse. In addition, though it is natural to
conceive that each server can serve multiple communities in the
metaverse, due to hardware resource constraints such as CPU,
memory, and storage constraints, we assume that there exists an
upper bound with respect to the number of communities that can
be maximally served by each server, which we henceforth refer to
as its processing capacity.

Stable matching. The fundamental problem of resource allo-
cation, which existed prevalently in cloud computing, networking,
and wireless communications, ranging from channel assignment
to job scheduling, has typically been formulated as a combina-
torial optimization problem (Chieochan et al. [6], for example,
formulated channel assignment and coding as a joint optimization
problem). In our problem in the context of the metaverse, we
are also interested in assigning metaverse users to their servers
in a metaverse network with the presence of server capacity con-
straints, which can also be formulated as an optimization problem
with the objective of optimizing the utilization of resources.

However, we argue that solving optimization problems using
off-the-shelf optimization solvers is centralized, and may not be
scalable to millions of users. In this paper, we advocate the use

• fully decentralized

• community interests

• processing capacities on the
servers

• latencies and bandwidth of links

…

An optimization problem —
rendezvous service in the
Metaverse

A toy example

5

Algorithm 1 REVISED DEFERRED ACCEPTANCE ALGORITHM
FOR STABLE RENDEZVOUS
Require: Set of servers and users S and U , s.t. 8s 2 S , 8u 2

U ; Servers’ and users’ rankings (preferences) L(s), L(u);
Bandwidth capacity B(s); Processing capacity P (s); Pair-
wise bandwidth between s and u b(s, u); User u’s community
ID c(u)

1: while N 6= ; do . N denotes the set of unassigned users
2: i 0
3: for u 2 N do
4: s the ith item from L(u)
5: Add u to the set of users on hold at server s, H(s)
6: end for
7: N ;

8: for s 2 S do
9: for u 2 H(s) do . iterate in the ranked order in L(s)

10: Add c(u) into the set of community IDs C(s)
11: if b(s, u) B(s) and |C(s)| P (s) then
12: B(s) B(s)�B(s, u)
13: else
14: Remove u from H(s)
15: Add u into the set of rejected users R(s)
16: Remove c(u) from C(s)
17: end if
18: end for
19: N = N [R(s)
20: end for
21: i i+ 1
22: end while
23: return the final matching H(s)

to accommodate applicants in the original college admissions
problem.

Our proposed algorithm, shown in Algorithm 1, proceeds as
follows. As a starting point, all users contact the servers of their
first choice using their respective preferences, L(u). Each server
s first places all the users who contacted it to its hold set H(s).
Subject to its bandwidth and processing capacity constraints (B(s)
and P (s)), the server then places users who rank highest on its
own preference list L(s) on a waiting list. In order to determine
who will be held on the waiting list, the server simply walks
down its preferences, from the highest to the lowest ranked users,
adding each user if it does not lead to a violation of either of the
server’s capacity constraints. Once the waiting list is established,
the remaining users will be rejected in the first round.

In the second round, rejected users then contact their second
choice. After a server has been contacted, it will start with a
hold set that contains all the users on its waiting list in the
previous round, and then add all the users who contacted it in
the current round. Using this revised hold set, it will follow the
same procedure as the previous round to determine its waiting list.
This iterative algorithm terminates when every user is either in the
waiting list of a server, or has been rejected by every server to
which he/she is willing to contact (i.e., in his/her ranking). At this
point, each server admits everyone on its waiting list, and stable
rendezvous has been achieved.

3.4 A Toy Example
After our proposed deferred acceptance algorithm terminates,

it is important to note that the bandwidth and processing capacities

Bandwidth: [260, 130]

Bandwidth: [170, 280]

Bandwidth: [140, 250]

[s2, s1]

[s2, s1]

[s1, s2]

[s2, s1]

Bandwidth: [250, 260]

s1
[u1, u4, u2, u3]

s1: u1, u2

s2: u3, u4

s2 [u3, u4, u1, u2]

Bandwidth capacity: 900
Processing capacity: 1

or

u2 and u4 are
not matched to

any server

Matching results

Users Servers

Bandwidth capacity: 900
Processing capacity: 1

match

Metaverse network

Fig. 2. As a toy example, we consider a metaverse network with four

users and two servers. Each user maintains a ranking based on his/her

pair-wise bandwidth to the servers. We use colours to indicate the

community a user belongs to. The servers have their own bandwidth

and processing capacities, and maintain a ranking of the users based

on network latencies (the values of these latencies are not shown in the

figure). We present two possible matching outcomes: the first is a normal

outcome, and the second shows a pathological case that our deferred

acceptance algorithm can fail to accommodate all the users even with

sufficient server capacities.

on some servers may not be fully utilized. A server’s processing
capacity is only related to the number of communities. Even a
server with a low processing capacity can still support a large
number of users in the same community, thereby shifting the
server capacity bottleneck to its bandwidth capacity, which should
not be exceeded by the sum of pair-wise available bandwidth from
the matched users. We now show a toy example to show that, even
with a sufficient amount of server capacity in both dimensions, we
may still fail to achieve a stable matching that accommodates all
the users.

Fig. 2 illustrates how metaverse users are matched to different
servers based on their community interests and network condi-
tions. In this example, the users produce their rankings based on
pair-wise bandwidth to the servers, and have the community they
belong to. Each user can only join one community at a time in
the metaverse, and it is denoted by the blue or green colour in
Fig. 2. Servers rank users by their network latencies, and have
their respective bandwidth and processing capacity constraints.
For instance, Server s1 has a bandwidth capacity of 900 Mbps and
a processing capacity of 1, with respect to the maximum number
of communities it is able to serve.

Let us now run our deferred acceptance algorithm iteratively.
In the first round, all users contact their highest ranked servers
based on their preferences, and each server being contacted
adds them to its hold set. s1 has u1 in its hold set, and s2
has [u2, u3, u4]. The servers should now check their respective
bandwidth and processing capacity constraints, and produce their
waiting lists: [u1] and [u3, u4] for s1 and s2, respectively. At the
end of the first round, the only user who is not on any waiting
list is u2. In the second round, u2 contacts the next server on
its preference, which is s1. After being contacted, s1 finds that it
does have sufficient capacity to accommodate u2, and adds it to
its waiting list. When the algorithm terminates, all users have been
matched to the servers: {(u1, s1), (u2, s1), (u3, s2), (u4, s2)}.

However, it should be noted that our deferred acceptance
algorithm may lead to a remarkably different outcome if server
capacity constraints and user communities change. In a patholog-

1

2

3

4

5

Algorithm 1 REVISED DEFERRED ACCEPTANCE ALGORITHM
FOR STABLE RENDEZVOUS
Require: Set of servers and users S and U , s.t. 8s 2 S , 8u 2

U ; Servers’ and users’ rankings (preferences) L(s), L(u);
Bandwidth capacity B(s); Processing capacity P (s); Pair-
wise bandwidth between s and u b(s, u); User u’s community
ID c(u)

1: while N 6= ; do . N denotes the set of unassigned users
2: i 0
3: for u 2 N do
4: s the ith item from L(u)
5: Add u to the set of users on hold at server s, H(s)
6: end for
7: N ;

8: for s 2 S do
9: for u 2 H(s) do . iterate in the ranked order in L(s)

10: Add c(u) into the set of community IDs C(s)
11: if b(s, u) B(s) and |C(s)| P (s) then
12: B(s) B(s)�B(s, u)
13: else
14: Remove u from H(s)
15: Add u into the set of rejected users R(s)
16: Remove c(u) from C(s)
17: end if
18: end for
19: N = N [R(s)
20: end for
21: i i+ 1
22: end while
23: return the final matching H(s)

to accommodate applicants in the original college admissions
problem.

Our proposed algorithm, shown in Algorithm 1, proceeds as
follows. As a starting point, all users contact the servers of their
first choice using their respective preferences, L(u). Each server
s first places all the users who contacted it to its hold set H(s).
Subject to its bandwidth and processing capacity constraints (B(s)
and P (s)), the server then places users who rank highest on its
own preference list L(s) on a waiting list. In order to determine
who will be held on the waiting list, the server simply walks
down its preferences, from the highest to the lowest ranked users,
adding each user if it does not lead to a violation of either of the
server’s capacity constraints. Once the waiting list is established,
the remaining users will be rejected in the first round.

In the second round, rejected users then contact their second
choice. After a server has been contacted, it will start with a
hold set that contains all the users on its waiting list in the
previous round, and then add all the users who contacted it in
the current round. Using this revised hold set, it will follow the
same procedure as the previous round to determine its waiting list.
This iterative algorithm terminates when every user is either in the
waiting list of a server, or has been rejected by every server to
which he/she is willing to contact (i.e., in his/her ranking). At this
point, each server admits everyone on its waiting list, and stable
rendezvous has been achieved.

3.4 A Toy Example
After our proposed deferred acceptance algorithm terminates,

it is important to note that the bandwidth and processing capacities

Bandwidth: [260, 130]

Bandwidth: [170, 280]

Bandwidth: [140, 250]

[s2, s1]

[s2, s1]

[s1, s2]

[s2, s1]

Bandwidth: [250, 260]

s1
[u1, u4, u2, u3]

s1: u1, u2

s2: u3, u4

s2 [u3, u4, u1, u2]

Bandwidth capacity: 900
Processing capacity: 1

or

u2 and u4 are
not matched to

any server

Matching results

Users Servers

Bandwidth capacity: 900
Processing capacity: 1

match

Metaverse network

Fig. 2. As a toy example, we consider a metaverse network with four

users and two servers. Each user maintains a ranking based on his/her

pair-wise bandwidth to the servers. We use colours to indicate the

community a user belongs to. The servers have their own bandwidth

and processing capacities, and maintain a ranking of the users based

on network latencies (the values of these latencies are not shown in the

figure). We present two possible matching outcomes: the first is a normal

outcome, and the second shows a pathological case that our deferred

acceptance algorithm can fail to accommodate all the users even with

sufficient server capacities.

on some servers may not be fully utilized. A server’s processing
capacity is only related to the number of communities. Even a
server with a low processing capacity can still support a large
number of users in the same community, thereby shifting the
server capacity bottleneck to its bandwidth capacity, which should
not be exceeded by the sum of pair-wise available bandwidth from
the matched users. We now show a toy example to show that, even
with a sufficient amount of server capacity in both dimensions, we
may still fail to achieve a stable matching that accommodates all
the users.

Fig. 2 illustrates how metaverse users are matched to different
servers based on their community interests and network condi-
tions. In this example, the users produce their rankings based on
pair-wise bandwidth to the servers, and have the community they
belong to. Each user can only join one community at a time in
the metaverse, and it is denoted by the blue or green colour in
Fig. 2. Servers rank users by their network latencies, and have
their respective bandwidth and processing capacity constraints.
For instance, Server s1 has a bandwidth capacity of 900 Mbps and
a processing capacity of 1, with respect to the maximum number
of communities it is able to serve.

Let us now run our deferred acceptance algorithm iteratively.
In the first round, all users contact their highest ranked servers
based on their preferences, and each server being contacted
adds them to its hold set. s1 has u1 in its hold set, and s2
has [u2, u3, u4]. The servers should now check their respective
bandwidth and processing capacity constraints, and produce their
waiting lists: [u1] and [u3, u4] for s1 and s2, respectively. At the
end of the first round, the only user who is not on any waiting
list is u2. In the second round, u2 contacts the next server on
its preference, which is s1. After being contacted, s1 finds that it
does have sufficient capacity to accommodate u2, and adds it to
its waiting list. When the algorithm terminates, all users have been
matched to the servers: {(u1, s1), (u2, s1), (u3, s2), (u4, s2)}.

However, it should be noted that our deferred acceptance
algorithm may lead to a remarkably different outcome if server
capacity constraints and user communities change. In a patholog-

1

2

3

4

5

Algorithm 1 REVISED DEFERRED ACCEPTANCE ALGORITHM
FOR STABLE RENDEZVOUS
Require: Set of servers and users S and U , s.t. 8s 2 S , 8u 2

U ; Servers’ and users’ rankings (preferences) L(s), L(u);
Bandwidth capacity B(s); Processing capacity P (s); Pair-
wise bandwidth between s and u b(s, u); User u’s community
ID c(u)

1: while N 6= ; do . N denotes the set of unassigned users
2: i 0
3: for u 2 N do
4: s the ith item from L(u)
5: Add u to the set of users on hold at server s, H(s)
6: end for
7: N ;

8: for s 2 S do
9: for u 2 H(s) do . iterate in the ranked order in L(s)

10: Add c(u) into the set of community IDs C(s)
11: if b(s, u) B(s) and |C(s)| P (s) then
12: B(s) B(s)�B(s, u)
13: else
14: Remove u from H(s)
15: Add u into the set of rejected users R(s)
16: Remove c(u) from C(s)
17: end if
18: end for
19: N = N [R(s)
20: end for
21: i i+ 1
22: end while
23: return the final matching H(s)

to accommodate applicants in the original college admissions
problem.

Our proposed algorithm, shown in Algorithm 1, proceeds as
follows. As a starting point, all users contact the servers of their
first choice using their respective preferences, L(u). Each server
s first places all the users who contacted it to its hold set H(s).
Subject to its bandwidth and processing capacity constraints (B(s)
and P (s)), the server then places users who rank highest on its
own preference list L(s) on a waiting list. In order to determine
who will be held on the waiting list, the server simply walks
down its preferences, from the highest to the lowest ranked users,
adding each user if it does not lead to a violation of either of the
server’s capacity constraints. Once the waiting list is established,
the remaining users will be rejected in the first round.

In the second round, rejected users then contact their second
choice. After a server has been contacted, it will start with a
hold set that contains all the users on its waiting list in the
previous round, and then add all the users who contacted it in
the current round. Using this revised hold set, it will follow the
same procedure as the previous round to determine its waiting list.
This iterative algorithm terminates when every user is either in the
waiting list of a server, or has been rejected by every server to
which he/she is willing to contact (i.e., in his/her ranking). At this
point, each server admits everyone on its waiting list, and stable
rendezvous has been achieved.

3.4 A Toy Example
After our proposed deferred acceptance algorithm terminates,

it is important to note that the bandwidth and processing capacities

Bandwidth: [260, 130]

Bandwidth: [170, 280]

Bandwidth: [140, 250]

[s2, s1]

[s2, s1]

[s1, s2]

[s2, s1]

Bandwidth: [250, 260]

s1
[u1, u4, u2, u3]

s1: u1, u2

s2: u3, u4

s2 [u3, u4, u1, u2]

Bandwidth capacity: 900
Processing capacity: 1

or

u2 and u4 are
not matched to

any server

Matching results

Users Servers

Bandwidth capacity: 900
Processing capacity: 1

match

Metaverse network

Fig. 2. As a toy example, we consider a metaverse network with four

users and two servers. Each user maintains a ranking based on his/her

pair-wise bandwidth to the servers. We use colours to indicate the

community a user belongs to. The servers have their own bandwidth

and processing capacities, and maintain a ranking of the users based

on network latencies (the values of these latencies are not shown in the

figure). We present two possible matching outcomes: the first is a normal

outcome, and the second shows a pathological case that our deferred

acceptance algorithm can fail to accommodate all the users even with

sufficient server capacities.

on some servers may not be fully utilized. A server’s processing
capacity is only related to the number of communities. Even a
server with a low processing capacity can still support a large
number of users in the same community, thereby shifting the
server capacity bottleneck to its bandwidth capacity, which should
not be exceeded by the sum of pair-wise available bandwidth from
the matched users. We now show a toy example to show that, even
with a sufficient amount of server capacity in both dimensions, we
may still fail to achieve a stable matching that accommodates all
the users.

Fig. 2 illustrates how metaverse users are matched to different
servers based on their community interests and network condi-
tions. In this example, the users produce their rankings based on
pair-wise bandwidth to the servers, and have the community they
belong to. Each user can only join one community at a time in
the metaverse, and it is denoted by the blue or green colour in
Fig. 2. Servers rank users by their network latencies, and have
their respective bandwidth and processing capacity constraints.
For instance, Server s1 has a bandwidth capacity of 900 Mbps and
a processing capacity of 1, with respect to the maximum number
of communities it is able to serve.

Let us now run our deferred acceptance algorithm iteratively.
In the first round, all users contact their highest ranked servers
based on their preferences, and each server being contacted
adds them to its hold set. s1 has u1 in its hold set, and s2
has [u2, u3, u4]. The servers should now check their respective
bandwidth and processing capacity constraints, and produce their
waiting lists: [u1] and [u3, u4] for s1 and s2, respectively. At the
end of the first round, the only user who is not on any waiting
list is u2. In the second round, u2 contacts the next server on
its preference, which is s1. After being contacted, s1 finds that it
does have sufficient capacity to accommodate u2, and adds it to
its waiting list. When the algorithm terminates, all users have been
matched to the servers: {(u1, s1), (u2, s1), (u3, s2), (u4, s2)}.

However, it should be noted that our deferred acceptance
algorithm may lead to a remarkably different outcome if server
capacity constraints and user communities change. In a patholog-

1

2

3

4

Metaverse rendezvous service

Stable matching as the solution

5

Algorithm 1 REVISED DEFERRED ACCEPTANCE ALGORITHM
FOR STABLE RENDEZVOUS
Require: Set of servers and users S and U , s.t. 8s 2 S , 8u 2

U ; Servers’ and users’ rankings (preferences) L(s), L(u);
Bandwidth capacity B(s); Processing capacity P (s); Pair-
wise bandwidth between s and u b(s, u); User u’s community
ID c(u)

1: while N 6= ; do . N denotes the set of unassigned users
2: i 0
3: for u 2 N do
4: s the ith item from L(u)
5: Add u to the set of users on hold at server s, H(s)
6: end for
7: N ;

8: for s 2 S do
9: for u 2 H(s) do . iterate in the ranked order in L(s)

10: Add c(u) into the set of community IDs C(s)
11: if b(s, u) B(s) and |C(s)| P (s) then
12: B(s) B(s)�B(s, u)
13: else
14: Remove u from H(s)
15: Add u into the set of rejected users R(s)
16: Remove c(u) from C(s)
17: end if
18: end for
19: N = N [R(s)
20: end for
21: i i+ 1
22: end while
23: return the final matching H(s)

to accommodate applicants in the original college admissions
problem.

Our proposed algorithm, shown in Algorithm 1, proceeds as
follows. As a starting point, all users contact the servers of their
first choice using their respective preferences, L(u). Each server
s first places all the users who contacted it to its hold set H(s).
Subject to its bandwidth and processing capacity constraints (B(s)
and P (s)), the server then places users who rank highest on its
own preference list L(s) on a waiting list. In order to determine
who will be held on the waiting list, the server simply walks
down its preferences, from the highest to the lowest ranked users,
adding each user if it does not lead to a violation of either of the
server’s capacity constraints. Once the waiting list is established,
the remaining users will be rejected in the first round.

In the second round, rejected users then contact their second
choice. After a server has been contacted, it will start with a
hold set that contains all the users on its waiting list in the
previous round, and then add all the users who contacted it in
the current round. Using this revised hold set, it will follow the
same procedure as the previous round to determine its waiting list.
This iterative algorithm terminates when every user is either in the
waiting list of a server, or has been rejected by every server to
which he/she is willing to contact (i.e., in his/her ranking). At this
point, each server admits everyone on its waiting list, and stable
rendezvous has been achieved.

3.4 A Toy Example
After our proposed deferred acceptance algorithm terminates,

it is important to note that the bandwidth and processing capacities

Bandwidth: [260, 130]

Bandwidth: [170, 280]

Bandwidth: [140, 250]

[s2, s1]

[s2, s1]

[s1, s2]

[s2, s1]

Bandwidth: [250, 260]

s1
[u1, u4, u2, u3]

s1: u1, u2

s2: u3, u4

s2 [u3, u4, u1, u2]

Bandwidth capacity: 900
Processing capacity: 1

or

u2 and u4 are
not matched to

any server

Matching results

Users Servers

Bandwidth capacity: 900
Processing capacity: 1

match

Metaverse network

Fig. 2. As a toy example, we consider a metaverse network with four

users and two servers. Each user maintains a ranking based on his/her

pair-wise bandwidth to the servers. We use colours to indicate the

community a user belongs to. The servers have their own bandwidth

and processing capacities, and maintain a ranking of the users based

on network latencies (the values of these latencies are not shown in the

figure). We present two possible matching outcomes: the first is a normal

outcome, and the second shows a pathological case that our deferred

acceptance algorithm can fail to accommodate all the users even with

sufficient server capacities.

on some servers may not be fully utilized. A server’s processing
capacity is only related to the number of communities. Even a
server with a low processing capacity can still support a large
number of users in the same community, thereby shifting the
server capacity bottleneck to its bandwidth capacity, which should
not be exceeded by the sum of pair-wise available bandwidth from
the matched users. We now show a toy example to show that, even
with a sufficient amount of server capacity in both dimensions, we
may still fail to achieve a stable matching that accommodates all
the users.

Fig. 2 illustrates how metaverse users are matched to different
servers based on their community interests and network condi-
tions. In this example, the users produce their rankings based on
pair-wise bandwidth to the servers, and have the community they
belong to. Each user can only join one community at a time in
the metaverse, and it is denoted by the blue or green colour in
Fig. 2. Servers rank users by their network latencies, and have
their respective bandwidth and processing capacity constraints.
For instance, Server s1 has a bandwidth capacity of 900 Mbps and
a processing capacity of 1, with respect to the maximum number
of communities it is able to serve.

Let us now run our deferred acceptance algorithm iteratively.
In the first round, all users contact their highest ranked servers
based on their preferences, and each server being contacted
adds them to its hold set. s1 has u1 in its hold set, and s2
has [u2, u3, u4]. The servers should now check their respective
bandwidth and processing capacity constraints, and produce their
waiting lists: [u1] and [u3, u4] for s1 and s2, respectively. At the
end of the first round, the only user who is not on any waiting
list is u2. In the second round, u2 contacts the next server on
its preference, which is s1. After being contacted, s1 finds that it
does have sufficient capacity to accommodate u2, and adds it to
its waiting list. When the algorithm terminates, all users have been
matched to the servers: {(u1, s1), (u2, s1), (u3, s2), (u4, s2)}.

However, it should be noted that our deferred acceptance
algorithm may lead to a remarkably different outcome if server
capacity constraints and user communities change. In a patholog-

1

2

3

4

5

Algorithm 1 REVISED DEFERRED ACCEPTANCE ALGORITHM
FOR STABLE RENDEZVOUS
Require: Set of servers and users S and U , s.t. 8s 2 S , 8u 2

U ; Servers’ and users’ rankings (preferences) L(s), L(u);
Bandwidth capacity B(s); Processing capacity P (s); Pair-
wise bandwidth between s and u b(s, u); User u’s community
ID c(u)

1: while N 6= ; do . N denotes the set of unassigned users
2: i 0
3: for u 2 N do
4: s the ith item from L(u)
5: Add u to the set of users on hold at server s, H(s)
6: end for
7: N ;

8: for s 2 S do
9: for u 2 H(s) do . iterate in the ranked order in L(s)

10: Add c(u) into the set of community IDs C(s)
11: if b(s, u) B(s) and |C(s)| P (s) then
12: B(s) B(s)�B(s, u)
13: else
14: Remove u from H(s)
15: Add u into the set of rejected users R(s)
16: Remove c(u) from C(s)
17: end if
18: end for
19: N = N [R(s)
20: end for
21: i i+ 1
22: end while
23: return the final matching H(s)

to accommodate applicants in the original college admissions
problem.

Our proposed algorithm, shown in Algorithm 1, proceeds as
follows. As a starting point, all users contact the servers of their
first choice using their respective preferences, L(u). Each server
s first places all the users who contacted it to its hold set H(s).
Subject to its bandwidth and processing capacity constraints (B(s)
and P (s)), the server then places users who rank highest on its
own preference list L(s) on a waiting list. In order to determine
who will be held on the waiting list, the server simply walks
down its preferences, from the highest to the lowest ranked users,
adding each user if it does not lead to a violation of either of the
server’s capacity constraints. Once the waiting list is established,
the remaining users will be rejected in the first round.

In the second round, rejected users then contact their second
choice. After a server has been contacted, it will start with a
hold set that contains all the users on its waiting list in the
previous round, and then add all the users who contacted it in
the current round. Using this revised hold set, it will follow the
same procedure as the previous round to determine its waiting list.
This iterative algorithm terminates when every user is either in the
waiting list of a server, or has been rejected by every server to
which he/she is willing to contact (i.e., in his/her ranking). At this
point, each server admits everyone on its waiting list, and stable
rendezvous has been achieved.

3.4 A Toy Example
After our proposed deferred acceptance algorithm terminates,

it is important to note that the bandwidth and processing capacities

Bandwidth: [260, 130]

Bandwidth: [170, 280]

Bandwidth: [140, 250]

[s2, s1]

[s2, s1]

[s1, s2]

[s2, s1]

Bandwidth: [250, 260]

s1
[u1, u4, u2, u3]

s1: u1, u2

s2: u3, u4

s2 [u3, u4, u1, u2]

Bandwidth capacity: 900
Processing capacity: 1

or

u2 and u4 are
not matched to

any server

Matching results

Users Servers

Bandwidth capacity: 900
Processing capacity: 1

match

Metaverse network

Fig. 2. As a toy example, we consider a metaverse network with four

users and two servers. Each user maintains a ranking based on his/her

pair-wise bandwidth to the servers. We use colours to indicate the

community a user belongs to. The servers have their own bandwidth

and processing capacities, and maintain a ranking of the users based

on network latencies (the values of these latencies are not shown in the

figure). We present two possible matching outcomes: the first is a normal

outcome, and the second shows a pathological case that our deferred

acceptance algorithm can fail to accommodate all the users even with

sufficient server capacities.

on some servers may not be fully utilized. A server’s processing
capacity is only related to the number of communities. Even a
server with a low processing capacity can still support a large
number of users in the same community, thereby shifting the
server capacity bottleneck to its bandwidth capacity, which should
not be exceeded by the sum of pair-wise available bandwidth from
the matched users. We now show a toy example to show that, even
with a sufficient amount of server capacity in both dimensions, we
may still fail to achieve a stable matching that accommodates all
the users.

Fig. 2 illustrates how metaverse users are matched to different
servers based on their community interests and network condi-
tions. In this example, the users produce their rankings based on
pair-wise bandwidth to the servers, and have the community they
belong to. Each user can only join one community at a time in
the metaverse, and it is denoted by the blue or green colour in
Fig. 2. Servers rank users by their network latencies, and have
their respective bandwidth and processing capacity constraints.
For instance, Server s1 has a bandwidth capacity of 900 Mbps and
a processing capacity of 1, with respect to the maximum number
of communities it is able to serve.

Let us now run our deferred acceptance algorithm iteratively.
In the first round, all users contact their highest ranked servers
based on their preferences, and each server being contacted
adds them to its hold set. s1 has u1 in its hold set, and s2
has [u2, u3, u4]. The servers should now check their respective
bandwidth and processing capacity constraints, and produce their
waiting lists: [u1] and [u3, u4] for s1 and s2, respectively. At the
end of the first round, the only user who is not on any waiting
list is u2. In the second round, u2 contacts the next server on
its preference, which is s1. After being contacted, s1 finds that it
does have sufficient capacity to accommodate u2, and adds it to
its waiting list. When the algorithm terminates, all users have been
matched to the servers: {(u1, s1), (u2, s1), (u3, s2), (u4, s2)}.

However, it should be noted that our deferred acceptance
algorithm may lead to a remarkably different outcome if server
capacity constraints and user communities change. In a patholog-

1

2

3

4

5

Algorithm 1 REVISED DEFERRED ACCEPTANCE ALGORITHM
FOR STABLE RENDEZVOUS
Require: Set of servers and users S and U , s.t. 8s 2 S , 8u 2

U ; Servers’ and users’ rankings (preferences) L(s), L(u);
Bandwidth capacity B(s); Processing capacity P (s); Pair-
wise bandwidth between s and u b(s, u); User u’s community
ID c(u)

1: while N 6= ; do . N denotes the set of unassigned users
2: i 0
3: for u 2 N do
4: s the ith item from L(u)
5: Add u to the set of users on hold at server s, H(s)
6: end for
7: N ;

8: for s 2 S do
9: for u 2 H(s) do . iterate in the ranked order in L(s)

10: Add c(u) into the set of community IDs C(s)
11: if b(s, u) B(s) and |C(s)| P (s) then
12: B(s) B(s)�B(s, u)
13: else
14: Remove u from H(s)
15: Add u into the set of rejected users R(s)
16: Remove c(u) from C(s)
17: end if
18: end for
19: N = N [R(s)
20: end for
21: i i+ 1
22: end while
23: return the final matching H(s)

to accommodate applicants in the original college admissions
problem.

Our proposed algorithm, shown in Algorithm 1, proceeds as
follows. As a starting point, all users contact the servers of their
first choice using their respective preferences, L(u). Each server
s first places all the users who contacted it to its hold set H(s).
Subject to its bandwidth and processing capacity constraints (B(s)
and P (s)), the server then places users who rank highest on its
own preference list L(s) on a waiting list. In order to determine
who will be held on the waiting list, the server simply walks
down its preferences, from the highest to the lowest ranked users,
adding each user if it does not lead to a violation of either of the
server’s capacity constraints. Once the waiting list is established,
the remaining users will be rejected in the first round.

In the second round, rejected users then contact their second
choice. After a server has been contacted, it will start with a
hold set that contains all the users on its waiting list in the
previous round, and then add all the users who contacted it in
the current round. Using this revised hold set, it will follow the
same procedure as the previous round to determine its waiting list.
This iterative algorithm terminates when every user is either in the
waiting list of a server, or has been rejected by every server to
which he/she is willing to contact (i.e., in his/her ranking). At this
point, each server admits everyone on its waiting list, and stable
rendezvous has been achieved.

3.4 A Toy Example
After our proposed deferred acceptance algorithm terminates,

it is important to note that the bandwidth and processing capacities

Bandwidth: [260, 130]

Bandwidth: [170, 280]

Bandwidth: [140, 250]

[s2, s1]

[s2, s1]

[s1, s2]

[s2, s1]

Bandwidth: [250, 260]

s1
[u1, u4, u2, u3]

s1: u1, u2

s2: u3, u4

s2 [u3, u4, u1, u2]

Bandwidth capacity: 900
Processing capacity: 1

or

u2 and u4 are
not matched to

any server

Matching results

Users Servers

Bandwidth capacity: 900
Processing capacity: 1

match

Metaverse network

Fig. 2. As a toy example, we consider a metaverse network with four

users and two servers. Each user maintains a ranking based on his/her

pair-wise bandwidth to the servers. We use colours to indicate the

community a user belongs to. The servers have their own bandwidth

and processing capacities, and maintain a ranking of the users based

on network latencies (the values of these latencies are not shown in the

figure). We present two possible matching outcomes: the first is a normal

outcome, and the second shows a pathological case that our deferred

acceptance algorithm can fail to accommodate all the users even with

sufficient server capacities.

on some servers may not be fully utilized. A server’s processing
capacity is only related to the number of communities. Even a
server with a low processing capacity can still support a large
number of users in the same community, thereby shifting the
server capacity bottleneck to its bandwidth capacity, which should
not be exceeded by the sum of pair-wise available bandwidth from
the matched users. We now show a toy example to show that, even
with a sufficient amount of server capacity in both dimensions, we
may still fail to achieve a stable matching that accommodates all
the users.

Fig. 2 illustrates how metaverse users are matched to different
servers based on their community interests and network condi-
tions. In this example, the users produce their rankings based on
pair-wise bandwidth to the servers, and have the community they
belong to. Each user can only join one community at a time in
the metaverse, and it is denoted by the blue or green colour in
Fig. 2. Servers rank users by their network latencies, and have
their respective bandwidth and processing capacity constraints.
For instance, Server s1 has a bandwidth capacity of 900 Mbps and
a processing capacity of 1, with respect to the maximum number
of communities it is able to serve.

Let us now run our deferred acceptance algorithm iteratively.
In the first round, all users contact their highest ranked servers
based on their preferences, and each server being contacted
adds them to its hold set. s1 has u1 in its hold set, and s2
has [u2, u3, u4]. The servers should now check their respective
bandwidth and processing capacity constraints, and produce their
waiting lists: [u1] and [u3, u4] for s1 and s2, respectively. At the
end of the first round, the only user who is not on any waiting
list is u2. In the second round, u2 contacts the next server on
its preference, which is s1. After being contacted, s1 finds that it
does have sufficient capacity to accommodate u2, and adds it to
its waiting list. When the algorithm terminates, all users have been
matched to the servers: {(u1, s1), (u2, s1), (u3, s2), (u4, s2)}.

However, it should be noted that our deferred acceptance
algorithm may lead to a remarkably different outcome if server
capacity constraints and user communities change. In a patholog-

1

2

3

4

5

Algorithm 1 REVISED DEFERRED ACCEPTANCE ALGORITHM
FOR STABLE RENDEZVOUS
Require: Set of servers and users S and U , s.t. 8s 2 S , 8u 2

U ; Servers’ and users’ rankings (preferences) L(s), L(u);
Bandwidth capacity B(s); Processing capacity P (s); Pair-
wise bandwidth between s and u b(s, u); User u’s community
ID c(u)

1: while N 6= ; do . N denotes the set of unassigned users
2: i 0
3: for u 2 N do
4: s the ith item from L(u)
5: Add u to the set of users on hold at server s, H(s)
6: end for
7: N ;

8: for s 2 S do
9: for u 2 H(s) do . iterate in the ranked order in L(s)

10: Add c(u) into the set of community IDs C(s)
11: if b(s, u) B(s) and |C(s)| P (s) then
12: B(s) B(s)�B(s, u)
13: else
14: Remove u from H(s)
15: Add u into the set of rejected users R(s)
16: Remove c(u) from C(s)
17: end if
18: end for
19: N = N [R(s)
20: end for
21: i i+ 1
22: end while
23: return the final matching H(s)

to accommodate applicants in the original college admissions
problem.

Our proposed algorithm, shown in Algorithm 1, proceeds as
follows. As a starting point, all users contact the servers of their
first choice using their respective preferences, L(u). Each server
s first places all the users who contacted it to its hold set H(s).
Subject to its bandwidth and processing capacity constraints (B(s)
and P (s)), the server then places users who rank highest on its
own preference list L(s) on a waiting list. In order to determine
who will be held on the waiting list, the server simply walks
down its preferences, from the highest to the lowest ranked users,
adding each user if it does not lead to a violation of either of the
server’s capacity constraints. Once the waiting list is established,
the remaining users will be rejected in the first round.

In the second round, rejected users then contact their second
choice. After a server has been contacted, it will start with a
hold set that contains all the users on its waiting list in the
previous round, and then add all the users who contacted it in
the current round. Using this revised hold set, it will follow the
same procedure as the previous round to determine its waiting list.
This iterative algorithm terminates when every user is either in the
waiting list of a server, or has been rejected by every server to
which he/she is willing to contact (i.e., in his/her ranking). At this
point, each server admits everyone on its waiting list, and stable
rendezvous has been achieved.

3.4 A Toy Example
After our proposed deferred acceptance algorithm terminates,

it is important to note that the bandwidth and processing capacities

Bandwidth: [260, 130]

Bandwidth: [170, 280]

Bandwidth: [140, 250]

[s2, s1]

[s2, s1]

[s1, s2]

[s2, s1]

Bandwidth: [250, 260]

s1
[u1, u4, u2, u3]

s1: u1, u2

s2: u3, u4

s2 [u3, u4, u1, u2]

Bandwidth capacity: 900
Processing capacity: 1

or

u2 and u4 are
not matched to

any server

Matching results

Users Servers

Bandwidth capacity: 900
Processing capacity: 1

match

Metaverse network

Fig. 2. As a toy example, we consider a metaverse network with four

users and two servers. Each user maintains a ranking based on his/her

pair-wise bandwidth to the servers. We use colours to indicate the

community a user belongs to. The servers have their own bandwidth

and processing capacities, and maintain a ranking of the users based

on network latencies (the values of these latencies are not shown in the

figure). We present two possible matching outcomes: the first is a normal

outcome, and the second shows a pathological case that our deferred

acceptance algorithm can fail to accommodate all the users even with

sufficient server capacities.

on some servers may not be fully utilized. A server’s processing
capacity is only related to the number of communities. Even a
server with a low processing capacity can still support a large
number of users in the same community, thereby shifting the
server capacity bottleneck to its bandwidth capacity, which should
not be exceeded by the sum of pair-wise available bandwidth from
the matched users. We now show a toy example to show that, even
with a sufficient amount of server capacity in both dimensions, we
may still fail to achieve a stable matching that accommodates all
the users.

Fig. 2 illustrates how metaverse users are matched to different
servers based on their community interests and network condi-
tions. In this example, the users produce their rankings based on
pair-wise bandwidth to the servers, and have the community they
belong to. Each user can only join one community at a time in
the metaverse, and it is denoted by the blue or green colour in
Fig. 2. Servers rank users by their network latencies, and have
their respective bandwidth and processing capacity constraints.
For instance, Server s1 has a bandwidth capacity of 900 Mbps and
a processing capacity of 1, with respect to the maximum number
of communities it is able to serve.

Let us now run our deferred acceptance algorithm iteratively.
In the first round, all users contact their highest ranked servers
based on their preferences, and each server being contacted
adds them to its hold set. s1 has u1 in its hold set, and s2
has [u2, u3, u4]. The servers should now check their respective
bandwidth and processing capacity constraints, and produce their
waiting lists: [u1] and [u3, u4] for s1 and s2, respectively. At the
end of the first round, the only user who is not on any waiting
list is u2. In the second round, u2 contacts the next server on
its preference, which is s1. After being contacted, s1 finds that it
does have sufficient capacity to accommodate u2, and adds it to
its waiting list. When the algorithm terminates, all users have been
matched to the servers: {(u1, s1), (u2, s1), (u3, s2), (u4, s2)}.

However, it should be noted that our deferred acceptance
algorithm may lead to a remarkably different outcome if server
capacity constraints and user communities change. In a patholog-

1

2

3

4

Let’s dive into the details

An existing solution of stable
matching problem

3

of stable matching [3] instead, which enjoys a number of salient
advantages. First, stable matching is a general framework that
uses preferences to model a user’s (or a server’s) interests, and
stability as a solution concept rather than optimality. As a solution
framework for general matching problems in networking [7], it
is well suited for our problem at hand. Second, the deferred
acceptance algorithm, designed to solve the stable marriage and
college admissions problems [3], is general, simple, and efficient
with a polynomial-time complexity, and can be fully decentralized.
Finally, stable matchings are known to be in the core of the market
that cannot be improved upon by a coalition of agents [8].

In the literature, due to its efficiency and simplicity of imple-
mentation, stable matching has been adopted to solve several cloud
computing, networking, and wireless communication problems
(e.g., [7], [9]). In this paper, we will focus on formulating our
problem of architecting a new decentralized rendezvous service
in the context of stable matching theory, and proposing a revised
design of the deferred acceptance algorithm that guarantees the
stability of the matching outcomes between metaverse users and
their servers, which we later refer to as a stable rendezvous. There
does not exist any previous work in the literature that addressed
the same challenge.

3 STABLE RENDEZVOUS: ALGORITHM DESIGN
We are now ready to design a new decentralized algorithm for

stable rendezvous using the stable matching theory and a revised
version of the deferred acceptance algorithm.

3.1 Stable Matching as the Solution Concept
As we discussed in Section 2, the dearth of existing work in the

literature that addresses the challenge of matching a large number
of metaverse users to a small number of geographically distributed
servers allows us to start with a clean-slate design.

One design objective of the utmost importance is that the
algorithm needs to be fully decentralized. This objective, though
seemingly obvious due to our emphasis on scalability, motivates
the use of stable matching theory, and rules out two alternatives
that are widely used in the cloud computing and networking
literature to solve resource allocation problems in general: First,
optimization-based solutions formulated the problem at hand as a
combinatorial optimization problem and used off-the-shelf solvers
or heuristics to solve it (e.g., [6]). Both heuristic algorithms and
off-the-shelf optimization solvers are inherently centralized, re-
quiring the input to be collected beforehand. Centralized solutions
are not scalable and cannot be executed asynchronously in a
distributed fashion. Second, game-theoretic approaches, such as
algorithms based on the concept of Nash Bargaining Solutions
(e.g., [10]) or double auctions (e.g., [11]), were also centralized
in nature, and some heuristics, such as those designed to compute
Nash Bargaining Solutions, were computationally hard to compute
as well.

Stable matching theory, on the other hand, offers a different
solution concept compared to optimization and game theory.
Rather than optimizing for a particular objective function or
computing the Nash equilibrium, we seek to achieve stability
instead. The merit of the stable matching framework, as shown
in related work in the literature [7], is its overall practicality due
to its decentralized algorithmic design. Depending on the nature
of the problem at hand, it is likely that the deferred acceptance
algorithm [3] can be applied with a revised design.

To introduce the basic concept of stability, we start by intro-
ducing a classic stable matching problem that is the closest to our
problem at hand of matching metaverse users to their servers: the
college admissions problem [3].

In the college admissions problem, a set of n applicants, A,
is to be assigned among m colleges C, each of which has a quota
qi of applicants it can maximally accommodate. Each applicant
ranks the colleges in the order of his/her preference, and each
college similarly ranks applicants who have applied for it in order
of its preference. For convenience we assume there are no ties
in the rankings. Each ranking, also called a preference, at both
applicants and colleges is denoted by �. For example, a �i b
in an applicant i’s ranking implies that the applicant prefers to
attend college a rather than b. If the applicant i prefers to remain
unmatched rather than being matched with college c (i.e., ; �i c),
then c is considered unacceptable to the applicant.

The outcome of an algorithm solving the college admissions
problem is a matching between applicants and colleges, defined in
general as:

Definition 1 (Matching). An outcome of the college admissions
problem is a matching µ : A⇥ C ! A⇥ C such that a 2 µ(c) if
and only if µ(a) = c, and µ(a) 2 C [;, µ(c) ✓ A [;, 8c, a.

This implies that an applicant can be unmatched to any
college—and a college can also be unmatched to any applicant—
but when an applicant a is matched to a college c, the college’s
matched list of applicants must include this applicant a. In other
words, a matching, as an outcome, matches applicants on one side
to colleges on the other side, or to the empty set.

We now need further qualifications to distill a desirable set
of matchings from all possible outcomes. Naturally, a stable
matching is desirable, and such stability is defined using the
concepts of individual rationality and blocking pairs:

Definition 2 (Individual rationality). A matching is individual
rational if and only if there does not exist an applicant a (or a
college c) who prefers being unmatched to being matched with
µ(a) (or µ(c)), i.e. ; �a µ(a) (or ; �c µ(c)) should not exist.

Definition 3 (Blocking pair). A matching µ is blocked by an
applicant-college pair (a, c) if they prefer each other to the match
they receive at µ. That is, c �a µ(a) and a �c a0, 9 a0 2 µ(c).

Definition 4 (Stablility). A matching µ is stable if and only if it
is both individually rational and not blocked by any other pairing
between applicants and colleges.

In other words, a matching of applicants to colleges will be
unstable if there are two applicants a and a0 who are matched to
colleges c and c0 respectively, although a0 prefers c to c0 and c
prefers a0 to a.

Gale and Shapley [3] has proved that a stable matching always
exists, and that among possibly many stable matchings, the op-
timal matching—from the perspective of applicants—is the most
desirable: a stable matching is optimal if every applicant is at least
as well off under it as under any other stable matching. Gale and
Shapley [3] also proved that the deferred acceptance algorithm that
they proposed, with the applicants proposing, is optimal from the
perspective of the applicants. The deferred acceptance algorithm is
simple, runs with polynomial-time complexity, and can potentially
be implemented in a decentralized fashion, as we shall show later
in this paper.

3

of stable matching [3] instead, which enjoys a number of salient
advantages. First, stable matching is a general framework that
uses preferences to model a user’s (or a server’s) interests, and
stability as a solution concept rather than optimality. As a solution
framework for general matching problems in networking [7], it
is well suited for our problem at hand. Second, the deferred
acceptance algorithm, designed to solve the stable marriage and
college admissions problems [3], is general, simple, and efficient
with a polynomial-time complexity, and can be fully decentralized.
Finally, stable matchings are known to be in the core of the market
that cannot be improved upon by a coalition of agents [8].

In the literature, due to its efficiency and simplicity of imple-
mentation, stable matching has been adopted to solve several cloud
computing, networking, and wireless communication problems
(e.g., [7], [9]). In this paper, we will focus on formulating our
problem of architecting a new decentralized rendezvous service
in the context of stable matching theory, and proposing a revised
design of the deferred acceptance algorithm that guarantees the
stability of the matching outcomes between metaverse users and
their servers, which we later refer to as a stable rendezvous. There
does not exist any previous work in the literature that addressed
the same challenge.

3 STABLE RENDEZVOUS: ALGORITHM DESIGN
We are now ready to design a new decentralized algorithm for

stable rendezvous using the stable matching theory and a revised
version of the deferred acceptance algorithm.

3.1 Stable Matching as the Solution Concept
As we discussed in Section 2, the dearth of existing work in the

literature that addresses the challenge of matching a large number
of metaverse users to a small number of geographically distributed
servers allows us to start with a clean-slate design.

One design objective of the utmost importance is that the
algorithm needs to be fully decentralized. This objective, though
seemingly obvious due to our emphasis on scalability, motivates
the use of stable matching theory, and rules out two alternatives
that are widely used in the cloud computing and networking
literature to solve resource allocation problems in general: First,
optimization-based solutions formulated the problem at hand as a
combinatorial optimization problem and used off-the-shelf solvers
or heuristics to solve it (e.g., [6]). Both heuristic algorithms and
off-the-shelf optimization solvers are inherently centralized, re-
quiring the input to be collected beforehand. Centralized solutions
are not scalable and cannot be executed asynchronously in a
distributed fashion. Second, game-theoretic approaches, such as
algorithms based on the concept of Nash Bargaining Solutions
(e.g., [10]) or double auctions (e.g., [11]), were also centralized
in nature, and some heuristics, such as those designed to compute
Nash Bargaining Solutions, were computationally hard to compute
as well.

Stable matching theory, on the other hand, offers a different
solution concept compared to optimization and game theory.
Rather than optimizing for a particular objective function or
computing the Nash equilibrium, we seek to achieve stability
instead. The merit of the stable matching framework, as shown
in related work in the literature [7], is its overall practicality due
to its decentralized algorithmic design. Depending on the nature
of the problem at hand, it is likely that the deferred acceptance
algorithm [3] can be applied with a revised design.

To introduce the basic concept of stability, we start by intro-
ducing a classic stable matching problem that is the closest to our
problem at hand of matching metaverse users to their servers: the
college admissions problem [3].

In the college admissions problem, a set of n applicants, A,
is to be assigned among m colleges C, each of which has a quota
qi of applicants it can maximally accommodate. Each applicant
ranks the colleges in the order of his/her preference, and each
college similarly ranks applicants who have applied for it in order
of its preference. For convenience we assume there are no ties
in the rankings. Each ranking, also called a preference, at both
applicants and colleges is denoted by �. For example, a �i b
in an applicant i’s ranking implies that the applicant prefers to
attend college a rather than b. If the applicant i prefers to remain
unmatched rather than being matched with college c (i.e., ; �i c),
then c is considered unacceptable to the applicant.

The outcome of an algorithm solving the college admissions
problem is a matching between applicants and colleges, defined in
general as:

Definition 1 (Matching). An outcome of the college admissions
problem is a matching µ : A⇥ C ! A⇥ C such that a 2 µ(c) if
and only if µ(a) = c, and µ(a) 2 C [;, µ(c) ✓ A [;, 8c, a.

This implies that an applicant can be unmatched to any
college—and a college can also be unmatched to any applicant—
but when an applicant a is matched to a college c, the college’s
matched list of applicants must include this applicant a. In other
words, a matching, as an outcome, matches applicants on one side
to colleges on the other side, or to the empty set.

We now need further qualifications to distill a desirable set
of matchings from all possible outcomes. Naturally, a stable
matching is desirable, and such stability is defined using the
concepts of individual rationality and blocking pairs:

Definition 2 (Individual rationality). A matching is individual
rational if and only if there does not exist an applicant a (or a
college c) who prefers being unmatched to being matched with
µ(a) (or µ(c)), i.e. ; �a µ(a) (or ; �c µ(c)) should not exist.

Definition 3 (Blocking pair). A matching µ is blocked by an
applicant-college pair (a, c) if they prefer each other to the match
they receive at µ. That is, c �a µ(a) and a �c a0, 9 a0 2 µ(c).

Definition 4 (Stablility). A matching µ is stable if and only if it
is both individually rational and not blocked by any other pairing
between applicants and colleges.

In other words, a matching of applicants to colleges will be
unstable if there are two applicants a and a0 who are matched to
colleges c and c0 respectively, although a0 prefers c to c0 and c
prefers a0 to a.

Gale and Shapley [3] has proved that a stable matching always
exists, and that among possibly many stable matchings, the op-
timal matching—from the perspective of applicants—is the most
desirable: a stable matching is optimal if every applicant is at least
as well off under it as under any other stable matching. Gale and
Shapley [3] also proved that the deferred acceptance algorithm that
they proposed, with the applicants proposing, is optimal from the
perspective of the applicants. The deferred acceptance algorithm is
simple, runs with polynomial-time complexity, and can potentially
be implemented in a decentralized fashion, as we shall show later
in this paper.

How can we add multiple
constraints in the existing
matching problem?

5

Algorithm 1 REVISED DEFERRED ACCEPTANCE ALGORITHM
FOR STABLE RENDEZVOUS
Require: Set of servers and users S and U , s.t. 8s 2 S , 8u 2

U ; Servers’ and users’ rankings (preferences) L(s), L(u);
Bandwidth capacity B(s); Processing capacity P (s); Pair-
wise bandwidth between s and u b(s, u); User u’s community
ID c(u)

1: while N 6= ; do . N denotes the set of unassigned users
2: i 0
3: for u 2 N do
4: s the ith item from L(u)
5: Add u to the set of users on hold at server s, H(s)
6: end for
7: N ;

8: for s 2 S do
9: for u 2 H(s) do . iterate in the ranked order in L(s)

10: Add c(u) into the set of community IDs C(s)
11: if b(s, u) B(s) and |C(s)| P (s) then
12: B(s) B(s)�B(s, u)
13: else
14: Remove u from H(s)
15: Add u into the set of rejected users R(s)
16: Remove c(u) from C(s)
17: end if
18: end for
19: N = N [R(s)
20: end for
21: i i+ 1
22: end while
23: return the final matching H(s)

Naturally, the design of our proposed algorithm is an extension
of deferred acceptance for the college admissions problem. The
main differences are proposed to accommodate both bandwidth
and processing capacity constraints on the servers, since we no
longer have the convenience of fixed-sized open slots for colleges
to accommodate applicants in the original college admissions
problem.

Our proposed algorithm, shown in Algorithm 1, proceeds as
follows. As a starting point, all users contact the servers of their
first choice using their respective preferences, L(u). Each server
s first places all the users who contacted it to its hold set H(s).
Subject to its bandwidth and processing capacity constraints (B(s)
and P (s)), the server then places users who rank highest on its
own preference list L(s) on a waiting list. In order to determine
who will be held on the waiting list, the server simply walks
down its preferences, from the highest to the lowest ranked users,
adding each user if it does not lead to a violation of either of the
server’s capacity constraints. Once the waiting list is established,
the remaining users will be rejected in the first round.

In the second round, rejected users then contact their second
choice. After a server has been contacted, it will start with a
hold set that contains all the users on its waiting list in the
previous round, and then add all the users who contacted it in
the current round. Using this revised hold set, it will follow the
same procedure as the previous round to determine its waiting list.
This iterative algorithm terminates when every user is either in the
waiting list of a server, or has been rejected by every server to
which he/she is willing to contact (i.e., in his/her ranking). At this
point, each server admits everyone on its waiting list, and stable

Bandwidth: [260, 130]

Bandwidth: [170, 280]

Bandwidth: [140, 250]

[s2, s1]

[s2, s1]

[s1, s2]

[s2, s1]

Bandwidth: [250, 260]

s1
[u1, u4, u2, u3]

s1: u1, u2

s2: u3, u4

s2 [u3, u4, u1, u2]

Bandwidth capacity: 900
Processing capacity: 1

or

u2 and u4 are
not matched to

any server

Matching results

Users Servers

Bandwidth capacity: 900
Processing capacity: 1

match

Metaverse network

Fig. 2. As a toy example, we consider a metaverse network with four

users and two servers. Each user maintains a ranking based on his/her

pair-wise bandwidth to the servers. We use colours to indicate the

community a user belongs to. The servers have their own bandwidth

and processing capacities, and maintain a ranking of the users based

on network latencies (the values of these latencies are not shown in the

figure). We present two possible matching outcomes: the first is a normal

outcome, and the second shows a pathological case that our deferred

acceptance algorithm can fail to accommodate all the users even with

sufficient server capacities.

rendezvous has been achieved.

3.4 A Toy Example
After our proposed deferred acceptance algorithm terminates,

it is important to note that the bandwidth and processing capacities
on some servers may not be fully utilized. A server’s processing
capacity is only related to the number of communities. Even a
server with a low processing capacity can still support a large
number of users in the same community, thereby shifting the
server capacity bottleneck to its bandwidth capacity, which should
not be exceeded by the sum of pair-wise available bandwidth from
the matched users. We now show a toy example to show that, even
with a sufficient amount of server capacity in both dimensions, we
may still fail to achieve a stable matching that accommodates all
the users.

Fig. 2 illustrates how metaverse users are matched to different
servers based on their community interests and network condi-
tions. In this example, the users produce their rankings based on
pair-wise bandwidth to the servers, and have the community they
belong to. Each user can only join one community at a time in
the metaverse, and it is denoted by the blue or green colour in
Fig. 2. Servers rank users by their network latencies, and have
their respective bandwidth and processing capacity constraints.
For instance, Server s1 has a bandwidth capacity of 900 Mbps and
a processing capacity of 1, with respect to the maximum number
of communities it is able to serve.

Let us now run our deferred acceptance algorithm iteratively.
In the first round, all users contact their highest ranked servers
based on their preferences, and each server being contacted
adds them to its hold set. s1 has u1 in its hold set, and s2
has [u2, u3, u4]. The servers should now check their respective
bandwidth and processing capacity constraints, and produce their
waiting lists: [u1] and [u3, u4] for s1 and s2, respectively. At the
end of the first round, the only user who is not on any waiting
list is u2. In the second round, u2 contacts the next server on
its preference, which is s1. After being contacted, s1 finds that it
does have sufficient capacity to accommodate u2, and adds it to

Conditions to satisfy

constraints

Fully decentralized

Optimization solution

Stability

Scalability

Fully decentralized

Optimization solution

Stability

Scalability

Is it Safe and Effective in the real world?

An experimental case study —
Multi-server federated learning

8

Fig. 4. Validation accuracy of the global model over the elapsed wall-

clock time in multi-server FL with CIFAR-10.

Fig. 5. Average network latencies across the users, produced by stable

rendezvous, random, and naïve greedy algorithms.

we also wish to show how the global model converges over time,
with respect to the validation accuracy of the global model. Fig. 4
show the average validation accuracy across multiple servers, as
models on these servers converge over time, in a training session
using asynchronous federated learning. While our algorithm with
stable rendezvous shows a decisive advantage over naïve greedy
matching, the advantage over random matching is not as sub-
stantial but still easily noticeable, as stable rendezvous converges
over 300 seconds faster than random matching. This indicates that
our algorithm produces a better allocation of server bandwidth
to users, and such advantages have indeed translated to a better
overall performance in multi-server asynchronous FL training.

Evaluating network latencies. Naturally, the average latency
experienced by all users may also be affected by how users
are matched to the servers. The lower latencies with stable ren-
dezvous, compared to its competitors, can be attributed to the fact
that stable rendezvous takes latency into account on the server
side, using it as a basis for matching users (as indicated in the
server’s ranking of users). This demonstrates the effectiveness of
incorporating latencies into the matching process to reduce the
overall latency for users.

Finally, it is important to note that while stable rendezvous
may not offer a substantial performance advantage over its random
or greedy counterparts in our experiments, it is also exceedingly
simple and fully decentralized, adding no unnecessary implemen-
tation complexity as compared to a random or greedy algorithm. In
addition, we believe that the performance benefits offered by stable
rendezvous will become more substantial as the number of users
scale up to levels well beyond what we are able to accommodate
in our experimental settings due to limitations of GPU resources.

5 CONCLUDING REMARKS

In this paper, we advocated for a new scalable rendezvous
service between millions of users in the metaverse and a col-
lection of geographically distributed servers, in order to best
accommodate the low-latency and high-bandwidth requirements
in metaverse applications. We proposed to use stable matching
theory to design a revised deferred acceptance algorithm to
achieve stable rendezvous, taking server capacity constraints into
account. In contrast to conventional optimization-based and game-
theoretic solutions, our algorithm is simple, fully decentralized and
asynchronous, enjoys polynomial-time complexity, and produces
an outcome that is stable and optimal from the perspective of
metaverse users. We have experimentally evaluated the feasibility
and performance of our algorithm in the case study of multi-server
federated learning, and show that it outperformed random and
greedy heuristics without inducing additional complexity.

REFERENCES

[1] J. D. N. Dionisio, W. G. B. III, and R. Gilbert, “3D Virtual Worlds and
the Metaverse: Current Status and Future Possibilities,” ACM Computing
Surveys (CSUR), vol. 45, no. 3, pp. 1–38, 2013.

[2] H. Duan, J. Li, S. Fan, Z. Lin, X. Wu, and W. Cai, “Metaverse for
Social Good: A University Campus Prototype,” in Proc. International
Conference on Multimedia. ACM, 2021, pp. 153–161.

[3] D. Gale and L. S. Shapley, “College Admissions and the Stability of
Marriage,” The American Mathematical Monthly, vol. 69, no. 1, pp. 9–
15, 1962.

[4] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-Efficient Learning of Deep Networks from Decentral-
ized Data,” in Proc. Artificial Intelligence and Statistics (AISTATS), 2017.

[5] Y. Wang, Z. Su, N. Zhang, R. Xing, D. Liu, T. H. Luan, and X. Shen,
“A Survey on Metaverse: Fundamentals, Security, and Privacy,” IEEE
Communications Surveys and Tutorials, 2022.

[6] M. Xu, W. C. Ng, W. Y. B. Lim, J. Kang, Z. Xiong, D. Niyato,
Q. Yang, X. S. Shen, and C. Miao, “A Full Dive into Realizing the Edge-
Enabled Metaverse: Visions, Enabling Technologies, and Challenges,”
IEEE Communications Surveys and Tutorials, 2022.

[7] S. Chieochan and E. Hossain, “Channel Assignment for Throughput
Optimization in Multichannel Multiradio Wireless Mesh Networks Using
Network Coding,” IEEE Transactions on Mobile Computing, vol. 12,
no. 1, pp. 118–135, 2013.

[8] H. Xu and B. Li, “Seen as Stable Marriages,” in Proc. IEEE INFOCOM.
IEEE, 2011, pp. 586–590.

[9] A. A. Roth and M. A. O. Sotomayor, Two-Sided Matching: A Study in
Game Theoretic Modeling and Analysis. Cambridge University Press,
1990, vol. 18.

[10] H. Xu and B. Li, “Anchor: A Versatile and Efficient Framework for
Resource Management in the Cloud,” IEEE Transactions on Parallel and
Distributed Systems, vol. 24, no. 6, pp. 1066–1076, 2012.

[11] Y. Gu, W. Saad, M. Bennis, M. Debbah, and Z. Han, “Matching Theory
for Future Wireless Networks: Fundamentals and Applications,” IEEE
Communications Magazine, vol. 53, no. 5, pp. 52–59, 2015.

[12] Y. Feng, B. Li, and B. Li, “Bargaining Towards Maximized Resource
Utilization in Video Streaming Datacenters,” in Proc. IEEE INFOCOM.
IEEE, 2012.

[13] W. Wang, B. Li, and B. Liang, “Bargaining Towards Maximized Re-
source Utilization in Video Streaming Datacenters,” in Proc. 8th IEEE
Conference on Sensor, Mesh and Ad Hoc Communications and Networks
(SECON). IEEE, 2011.

[14] A. E. Roth, “The College Admissions Problem Is Not Equivalent to the
Marriage Problem,” Journal of economic Theory, vol. 36, no. 2, pp. 277–
288, 1985.

[15] V. Ribeiro, R. Riedi, J. Navrátil, and L. Cottrell, “pathChirp: Efficient
Available Bandwidth Estimation for Network Paths,” in Proc. Passive
and Active Measurement Workshop, April 2003.

[16] T. Taleb, I. Afolabi, K. Samdanis, and F. Z. Yousaf, “On Multi-Domain
Network Slicing Orchestration Architecture and Federated Resource
Control,” IEEE Network, vol. 33, no. 5, pp. 242–252, 2019.

[17] X. Zhou, C. Liu, and J. Zhao, “Resource Allocation of Federated
Learning for the Metaverse with Mobile Augmented Reality,” arXiv
preprint arXiv:2211.08705, 2022.

— CIFAR-10&
 ResNet18

7

capacities—and to predict the “consumption” of such capacities
from each user when he/she proposes. This assumption is quite
mild and typically holds in practice in the metaverse.

Pair-wise bandwidth. Algorithm 1 also makes the assumption
that pair-wise available bandwidth between a user and a server is
readily available as input. In practice, crude estimates of pair-wise
available bandwidth can be achieved using any of the bandwidth
estimation algorithms, such as pathChirp [15]. We believe that
bandwidth estimates do not need to be accurate for the algorithm
to be effective: even just a binary estimate—“sufficient” and “low”
for example—may be good enough for a user to avoid servers that
are not suitable to meet its bandwidth needs. More accurate esti-
mates are obviously desirable, especially for bandwidth-intensive
applications in the metaverse.

4 MULTI-SERVER FEDERATED LEARNING: AN EX-
PERIMENTAL CASE STUDY

The privacy concerns of metaverse users are paramount [5]. As
such, it is necessary to ensure that personal activities and financial
transactions within the metaverse are kept strictly with the user.
To evaluate the feasibility and performance of the rendezvous
service and our proposed algorithm, we present an experimental
case study using multi-server federated learning [16].

As a distributed machine learning paradigm that allows a large
number of users to collaboratively train a shared machine learning
(ML) model while preserving the privacy of user data, federated
learning (FL) [4] has the potential to improve the user experience
in the metaverse by training ML models to be used in metaverse
applications. For instance, FL can be used to train an ML model
to predict network latencies or to optimize the rendering of virtual
objects. Several existing works in the literature have studied the
use of federated learning in the metaverse (e.g., [17]).

Our experimental case study involves training tasks using the
paradigm of multi-server federated learning [16]. Departing from
the conventional wisdom of using a single FL server, multi-server
FL allows multiple FL servers to be deployed concurrently, each
serving a subset of users. Our experimental case study involves
a careful implementation of Algorithm 1 in the context of multi-
server FL, which we developed using Plato a scalable open-source
FL framework that is designed to evaluate new FL algorithms
involving a large number of users, yet within the confines of one
multi-GPU server.

Implementing the deferred acceptance algorithm. Our im-
plementation of Algorithm 1 utilizes randomly generated a pair-
wise bandwidth matrix and delay matrix between the users and
the servers, and then simulating multiple servers using one actual
server process. The users communicate with the server process
using the real-world WebSockets protocol, which is supported
by Plato. We have also implemented a procedure to verify the
stability of the outcome produced by our algorithm, using the
definition of blocking pairs in Definition 5. Our implementation
will be made available as open-source.

In a general FL workflow, each server selects a subset of
clients and sends them a copy of the global model. The user trains
the model locally using its own data, and sends updated model
parameters to its server. This workflow proceeds in asynchronous
communication rounds with a buffer of updates from clients, until
the model converges to a target accuracy. As the size of ML
models is typically large, such a multi-server FL workflow is a
typical bandwidth-intensive application. Our algorithm is executed

(a) Multi-server FL with MNIST. (b) Multi-server FL with CIFAR-10.

Fig. 3. Communication time taken in each of the communication rounds.

periodically, due to the dynamic nature of metaverse users, who
may be participating in different communities and experiencing
varying available bandwidth and latencies over time.

Experimental settings. To evaluate the performance of our
rendezvous service, we compared it with two baseline heuristics.
The first baseline is a simple random matching algorithm, which
assigns each user to a randomly selected server. The second
baseline alternative is a naïve greedy algorithm, which assigns
each user to the server that offers the highest pair-wise bandwidth
between them. The community that each user participates in is
generated randomly with a uniform distribution, and both the
pair-wise available bandwidth and network latencies are both
drawn from normal distributions: with 100 KB/second and 300
milliseconds as the mean, and 10 KB/second and 100 milliseconds
as the standard deviation, respectively. We deployed 5 servers,
with a total of 500 users and 15 users selected per round, and our
evaluations are carried out (1) using the MNIST dataset to train the
LeNet-5 model; and (2) using the CIFAR-10 dataset to train the
ResNet-18 model.

Experimental results.
Evaluating the training time in communication rounds. The

time it takes to complete each communication round in multi-
server FL training depends on both the computation time training
the model locally on each user, and the time it takes to transmit
the model to and from the server. The latter naturally depends
heavily on the amount of bandwidth available. With random and
naïve greedy matching algorithms, a server can be over-subscribed
with more users, violating its capacity constraints. In such cases,
the server will have no choice but to share its limited bandwidth
capacity across all the users it is currently serving, resulting in a
lower achievable throughput for each user.

Figs. 3a and 3b show the communication time taken in each
of the communication rounds, comparing our proposed algorithm
with both random and naïve greedy heuristics. We observe that
the naïve greedy algorithm experienced more diverse and longer
round times over different communication rounds. This is because
when users are always matched to the server with the highest pair-
wise bandwidth, over-subscription of server capacities tends to be
more severe in some of the rounds than simply using a random
matching algorithm. In contrast, the stable rendezvous outcomes
computed by our proposed algorithm experienced per-round times
that were the most steady over time. Most notably, our stable
rendezvous algorithm significantly reduces communication time,
particularly on the CIFAR-10 dataset. This is because the payload
of the MNIST task is relatively small and the bandwidth influence
is less pronounced than for larger tasks such as CIFAR-10.

Evaluating the behaviour for the global accuracy to converge
over time. In addition to the communication time in each round,

— CIFAR-10&
 ResNet18

— CIFAR-10&
 ResNet18

8

Fig. 4. Validation accuracy of the global model over the elapsed wall-

clock time in multi-server FL with CIFAR-10.

Fig. 5. Average network latencies across the users, produced by stable

rendezvous, random, and naïve greedy algorithms.

we also wish to show how the global model converges over time,
with respect to the validation accuracy of the global model. Fig. 4
show the average validation accuracy across multiple servers, as
models on these servers converge over time, in a training session
using asynchronous federated learning. While our algorithm with
stable rendezvous shows a decisive advantage over naïve greedy
matching, the advantage over random matching is not as sub-
stantial but still easily noticeable, as stable rendezvous converges
over 300 seconds faster than random matching. This indicates that
our algorithm produces a better allocation of server bandwidth
to users, and such advantages have indeed translated to a better
overall performance in multi-server asynchronous FL training.

Evaluating network latencies. Naturally, the average latency
experienced by all users may also be affected by how users
are matched to the servers. The lower latencies with stable ren-
dezvous, compared to its competitors, can be attributed to the fact
that stable rendezvous takes latency into account on the server
side, using it as a basis for matching users (as indicated in the
server’s ranking of users). This demonstrates the effectiveness of
incorporating latencies into the matching process to reduce the
overall latency for users.

Finally, it is important to note that while stable rendezvous
may not offer a substantial performance advantage over its random
or greedy counterparts in our experiments, it is also exceedingly
simple and fully decentralized, adding no unnecessary implemen-
tation complexity as compared to a random or greedy algorithm. In
addition, we believe that the performance benefits offered by stable
rendezvous will become more substantial as the number of users
scale up to levels well beyond what we are able to accommodate
in our experimental settings due to limitations of GPU resources.

5 CONCLUDING REMARKS

In this paper, we advocated for a new scalable rendezvous
service between millions of users in the metaverse and a col-
lection of geographically distributed servers, in order to best
accommodate the low-latency and high-bandwidth requirements
in metaverse applications. We proposed to use stable matching
theory to design a revised deferred acceptance algorithm to
achieve stable rendezvous, taking server capacity constraints into
account. In contrast to conventional optimization-based and game-
theoretic solutions, our algorithm is simple, fully decentralized and
asynchronous, enjoys polynomial-time complexity, and produces
an outcome that is stable and optimal from the perspective of
metaverse users. We have experimentally evaluated the feasibility
and performance of our algorithm in the case study of multi-server
federated learning, and show that it outperformed random and
greedy heuristics without inducing additional complexity.

REFERENCES

[1] J. D. N. Dionisio, W. G. B. III, and R. Gilbert, “3D Virtual Worlds and
the Metaverse: Current Status and Future Possibilities,” ACM Computing
Surveys (CSUR), vol. 45, no. 3, pp. 1–38, 2013.

[2] H. Duan, J. Li, S. Fan, Z. Lin, X. Wu, and W. Cai, “Metaverse for
Social Good: A University Campus Prototype,” in Proc. International
Conference on Multimedia. ACM, 2021, pp. 153–161.

[3] D. Gale and L. S. Shapley, “College Admissions and the Stability of
Marriage,” The American Mathematical Monthly, vol. 69, no. 1, pp. 9–
15, 1962.

[4] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-Efficient Learning of Deep Networks from Decentral-
ized Data,” in Proc. Artificial Intelligence and Statistics (AISTATS), 2017.

[5] Y. Wang, Z. Su, N. Zhang, R. Xing, D. Liu, T. H. Luan, and X. Shen,
“A Survey on Metaverse: Fundamentals, Security, and Privacy,” IEEE
Communications Surveys and Tutorials, 2022.

[6] M. Xu, W. C. Ng, W. Y. B. Lim, J. Kang, Z. Xiong, D. Niyato,
Q. Yang, X. S. Shen, and C. Miao, “A Full Dive into Realizing the Edge-
Enabled Metaverse: Visions, Enabling Technologies, and Challenges,”
IEEE Communications Surveys and Tutorials, 2022.

[7] S. Chieochan and E. Hossain, “Channel Assignment for Throughput
Optimization in Multichannel Multiradio Wireless Mesh Networks Using
Network Coding,” IEEE Transactions on Mobile Computing, vol. 12,
no. 1, pp. 118–135, 2013.

[8] H. Xu and B. Li, “Seen as Stable Marriages,” in Proc. IEEE INFOCOM.
IEEE, 2011, pp. 586–590.

[9] A. A. Roth and M. A. O. Sotomayor, Two-Sided Matching: A Study in
Game Theoretic Modeling and Analysis. Cambridge University Press,
1990, vol. 18.

[10] H. Xu and B. Li, “Anchor: A Versatile and Efficient Framework for
Resource Management in the Cloud,” IEEE Transactions on Parallel and
Distributed Systems, vol. 24, no. 6, pp. 1066–1076, 2012.

[11] Y. Gu, W. Saad, M. Bennis, M. Debbah, and Z. Han, “Matching Theory
for Future Wireless Networks: Fundamentals and Applications,” IEEE
Communications Magazine, vol. 53, no. 5, pp. 52–59, 2015.

[12] Y. Feng, B. Li, and B. Li, “Bargaining Towards Maximized Resource
Utilization in Video Streaming Datacenters,” in Proc. IEEE INFOCOM.
IEEE, 2012.

[13] W. Wang, B. Li, and B. Liang, “Bargaining Towards Maximized Re-
source Utilization in Video Streaming Datacenters,” in Proc. 8th IEEE
Conference on Sensor, Mesh and Ad Hoc Communications and Networks
(SECON). IEEE, 2011.

[14] A. E. Roth, “The College Admissions Problem Is Not Equivalent to the
Marriage Problem,” Journal of economic Theory, vol. 36, no. 2, pp. 277–
288, 1985.

[15] V. Ribeiro, R. Riedi, J. Navrátil, and L. Cottrell, “pathChirp: Efficient
Available Bandwidth Estimation for Network Paths,” in Proc. Passive
and Active Measurement Workshop, April 2003.

[16] T. Taleb, I. Afolabi, K. Samdanis, and F. Z. Yousaf, “On Multi-Domain
Network Slicing Orchestration Architecture and Federated Resource
Control,” IEEE Network, vol. 33, no. 5, pp. 242–252, 2019.

[17] X. Zhou, C. Liu, and J. Zhao, “Resource Allocation of Federated
Learning for the Metaverse with Mobile Augmented Reality,” arXiv
preprint arXiv:2211.08705, 2022.

Privacy,
communication overhead,

performance and latency are guaranteed

Objectives Revisited
2

Educate Work

Maximum processing
capacity on the number
of communities

Socialize
PlayCommunities

Geographically
Distributed
Servers

Users

Communities hosted at the servers Network latency and link bandwidth

... ...

Server bandwidth
capacity

Fig. 1. A variety of preferences involving network latencies and link

bandwidth, as well as constraints involving bandwidth and processing

capacities at the servers, need to be considered when designing a

new rendezvous service of matching users to geographically distributed

servers around the world.

account community interests of the metaverse users, capacities
on the servers, as well as link latencies and bandwidth between
the users and the servers. Such a decentralized solution should
also be sufficiently general and applicable to a wide variety of
applications in the metaverse.

To achieve such an objective, we propose to use a revised
design of the deferred acceptance algorithm to produce a sta-
ble matching between the metaverse users and their servers,
without violating the server capacity constraints. Our proposed
algorithm is both simple and decentralized in nature, and enjoys
a polynomial-time complexity just as the conventional deferred
acceptance algorithm for the college admissions problem [3]. Due
to the importance of link-level pair-wise network latencies and
bandwidth between the users and the servers in the metaverse, our
algorithm prioritizes them over resource utilization on the servers.

Our original contributions in this paper are three-fold. First,
we propose a new rendezvous service between a large number
of metaverse users and their servers to improve the scalability of
metaverse applications, especially when multiple virtual commu-
nities need to be simultaneously supported, each consisting of its
own group of users. Second, given the significance of network la-
tencies and available bandwidth in metaverse-centric applications,
we propose a scalable and simple user-server matching algorithm
based on deferred acceptance, which can be implemented in a
fully decentralized fashion, and show that the matching it pro-
duces is stable. Finally, We demonstrate the performance of our
algorithm by training globally shared machine learning models
using federated learning (FL) [4], a privacy-preserving distributed
training mechanism, as a case study. In our experiments, we
simulate the communication between users and servers during
FL sessions and varying network environments in the metaverse,
using the MNIST and CIFAR-10 datasets for image classification
tasks. Our experimental results show that, in cases of large-scale
concurrent users and dynamic network environments, periodically
running our rendezvous matching algorithm has minimal impact
on our tasks due to its simplicity.

2 PRELIMINARIES AND RELATED WORK
Scalability. Constructing large-scale network topologies that

connect users to a number of servers in geographically distributed
datacenters is required for the sake of better scalability, which has

been widely recognized as one of the fundamental challenges in
the metaverse [1], [5]. This is particularly the case for the meta-
verse, where millions of users are expected to interact with one
another within the confines of virtual communities. At the same
time, metaverse applications have exacting requirements for ultra-
high network bandwidth and ultra-low network latencies. While
discussions of the specifics of how a real-world metaverse network
may be engineered to meet these requirements — with better
congestion control algorithms or better utilization of the wireless
spectrum with beyond 5G technologies, for example — it is worth
noting that both available bandwidth and network latencies in real-
world metaverse networks tend to vary over time in practice. In
this paper, we focus on designing a decentralized algorithm to
construct the network topology between metaverse users and their
servers, with the reasonable assumption that network latencies
and available bandwidth can be readily measured (or predicted
using historical estimates) between each individual user and all
the servers in the metaverse.

Metaverse communities. The concept of having virtual com-
munities in the metaverse is quite intuitive: consider a virtual
3D world with multiple gathering locations, both indoors and
outdoors, that a user can roam to and start interacting with
other users at the same virtual location. Existing literature on the
metaverse has also made it clear that metaverse communities are
important for self-governance, forming an autonomous Code of
Conduct that can be enforced using blockchain technologies [5].
A community can also take the form of a sub-metaverse [5], each
of which can offer various kinds of goods and services, such as
gaming, social dating, online venues such as museums, and online
events such as concerts. In this paper, the term community has
general connotations that can represent either sub-metaverses [5],
virtual locations in a 3D world [1], or virtual environments.

On the one hand, at any given moment, it is reasonable to
assume that a user may only be engaged in one activity in the
metaverse — such as working or playing a game — which implies
that each user can only participate in one community at any
given time. On the other hand, as we are deploying a small
number of servers in geographically distributed datacenters to
serve a large number of users, it is straightforward to observe
that each server has a maximum bandwidth capacity when serving
their users in the metaverse. In addition, though it is natural to
conceive that each server can serve multiple communities in the
metaverse, due to hardware resource constraints such as CPU,
memory, and storage constraints, we assume that there exists an
upper bound with respect to the number of communities that can
be maximally served by each server, which we henceforth refer to
as its processing capacity.

Stable matching. The fundamental problem of resource allo-
cation, which existed prevalently in cloud computing, networking,
and wireless communications, ranging from channel assignment
to job scheduling, has typically been formulated as a combina-
torial optimization problem (Chieochan et al. [6], for example,
formulated channel assignment and coding as a joint optimization
problem). In our problem in the context of the metaverse, we
are also interested in assigning metaverse users to their servers
in a metaverse network with the presence of server capacity con-
straints, which can also be formulated as an optimization problem
with the objective of optimizing the utilization of resources.

However, we argue that solving optimization problems using
off-the-shelf optimization solvers is centralized, and may not be
scalable to millions of users. In this paper, we advocate the use

• fully decentralized

• community interests

• processing capacities on the
servers

• latencies and bandwidth of links

• privacy

…

ningxinsu.github.io

