Multi-Server Stable
for the Metaverse

Ningxin Su, Baochun Li
Department of Electrical and Computer Engineering
University of Toronto

Bo Li
Department of Computer Science and Engineering
Hong Kong University of Science and Technology

Maximum processing
capacity on the number
of communities

Geographically =
Distributed

Servers

Server bandwidth
capacity

Users

<€ - - Communities hosted at the servers <« Network latency and link bandwidth

Objectives

Educate

* fully decentralized
 community interests

* processing capacities on the
Servers

e |atencies and bandwidth of links

An optimization problem —

rendezvous service in the
Metaverse

A toy example

| C-
, &=

Users

e

—

Servers -

3

s £ 8.

—

Bandwidth capacity: 900
Processing capacity: 1

—i

Bandwidth capacity: 900
Processing capacity: 1

—

Servers -

—r

| C-

Bandwidth: [260, 130] —/
2 g: Bandwidth capacity: 900
Bandwidth: [170, 280] Processing capacity: 1

—match+=Y

& =
3 :
Bandwidth: [140, 250]
Bandwidth capacity: 900

. é)_ Processing capacity: 1
Bandwidth: [250, 260]
—

Users g— g— Servers -

Metaverse rendezvous service

Stable matching as the solution

1 8 = 51, 52

Bandwidth: [260, 130]

2 g: 52,51

Bandwidth: [170, 280]

s &= sl

Bandwidth: [140, 250]

4 é): 52,51

Bandwidth: [250, 260]

s £ B

—

[u]_a U4, Uz, U3]

Bandwidth capacity: 900
Processing capacity: 1

—

[U3, U4, u]_) Uz]

Bandwidth capacity: 900
Processing capacity: 1

—

Servers -

1 g = 51, 52

Bandwidth: [260, 130]

2 g: 52,51

Bandwidth: [170, 280]

s &= sl

Bandwidth: [140, 250]

4 é): 52,51

Bandwidth: [250, 260]

s £ B

—

[u]_a U4, Uz, U3]

Bandwidth capacity: 900
Processing capacity: 1

—

[U3, U4, u]_) Uz]

Bandwidth capacity: 900
Processing capacity: 1

—

Servers -

S1: U, Uy

1 8 = 51, 52

Bandwidth: [260, 130]

, &= s (&%)

Bandwidth: [170, 280]

3 8: 52,51 (é):)

Bandwidth: [140, 250]

4 é): 52,51

Bandwidth: [250, 260]

s £ B

—

[u]_a U4, Uz, U3]

Bandwidth capacity: 900
Processing capacity: 1

—

[U3, U4, u]_) Uz]

Bandwidth capacity: 900
Processing capacity: 1

—

Servers -

S1: U, Uy

1 8 = 51, 52

Bandwidth: [260, 130]

, &= s (&%)

Bandwidth: [170, 280]

3 8: 52,51 (8:)

Bandwidth: [140, 250]

4 é): 52,51

Bandwidth: [250, 260]

s £ B

—

[u]_a U4, Uz, U3]

Bandwidth capacity: 900
Processing capacity: 1

—

[U3, U4, u]_) Uz]

Bandwidth capacity: 900
Processing capacity: 1

—

Servers -

S1: U, Uy

u, and uy are

not matched to
any server

Let’s dive Into the detalls

An existing solution of stable
matching problem

Definition 1 (Matching). An outcome of the college admissions
problem is a matching i1 : A X C — A X C such that a € p(c) if
and only if (a) = ¢, and pu(a) € CUD, u(c) C AUD, Ve, a.

Definition 2 (Individual rationality). A matching is individual
rational if and only if there does not exist an applicant a (or a
college c) who prefers being unmatched to being matched with

u(a) (or p(c)), ie. 0 =4 p(a) (or O =, p(c)) should not exist.

Definition 3 (Blocking pair). A matching 1 is blocked by an
applicant-college pair (a, c) if they prefer each other to the match
they receive at (1. That is, ¢ =, p(a) and a =. a’,d a’ € u(c).

Definition 4 (Stablility). A matching (v is stable if and only if it
is both individually rational and not blocked by any other pairing
between applicants and colleges.

How can we add multiple
constraints in the existing
matching problem?

1: while N 4) do > N denotes the set of unassigned users
2: 1 < 0
3 foru e N do
4: s < the i*" item from L(u)
5: Add u to the set of users on hold at server s, H(s)
6: end for
7: N 0
8: for s € S do
9: for u € H(s) do 1> iterate in the ranked order in L(s)
10: Add c(u) into the set of community IDs C(s)
11: (if b(s,u) < B(s) and [C(s)] < P(s) then> _ Conditions to satisfy
12; B(s) « B(s) — B(s, u) constraints
13: else
14: Remove u from H(s)
15: Add u into the set of rejected users R(s)
16: Remove c(u) from C(s)
17: end if
18: end for
19: N =N UR(s)
20: end for
21: 1< 1+ 1

22: end while
23: return the final matching H(s)

Fully decentralized
Optimization solution
Stability

Scalabllity

Fully decentralized
Optimization solution
Stability

Scalabllity

Is it Safe and Effective in the real world?

An experimental case study —
Multi-server federated learning

(

Accuracy (%)

O
o
|

O
o1
|

O
AN
|

—
OV
|

O
N
|

&
—
|

Random Matching

Naive Greedy Matching

Stable Rendezvous

0

400

800

1200 1600 2000 2400
Elapsed time (s)

2800

— CIFAR-10&
ResNet18

Communication time (s)

H —e— Random Matching
30 - : TI —=-==Naive Greedy Matching
s :' II —e— Stable Rendezvous
-9 | |
754
¥ | n| #
\ | oo 4
0 - ¢ | R ‘X"\""\ A IR YA
Vi \ 2 I ‘1
[‘\ } I \ "'
65 - \" 0= b “/\
0 NN Ay Py e AN
I . ‘J ¥ \ I
" ¥y \ 2] . R
55 - \/ YAY) “y
d 3 b
5 10 15 20 25 30 35 40

Communication round

— CIFAR-10&
ResNet18

Average Latency (ms)

1.2 -

-
o
|

O
o0

&
o

O
A
I

O
N

0.0

0.7924

Ranldom

Naive Greedy

Stable

— CIFAR-10&
ResNet18

Privacy,
communication overhead,
performance and latency are guaranteed

Objectives Revisited

Educate

* fully decentralized
 community interests

* processing capacities on the
Servers

e |atencies and bandwidth of links

* privacy

ningxinsu.github.lo

