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Objectives
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e |atencies and bandwidth of links




An optimization problem —

rendezvous service in the
Metaverse




A toy example
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Metaverse rendezvous service

Stable matching as the solution
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Let’s dive Into the detalls



An existing solution of stable
matching problem




Definition 1 (Matching). An outcome of the college admissions
problem is a matching i1 : A X C — A X C such that a € p(c) if
and only if (a) = ¢, and pu(a) € CUD, u(c) C AUD, Ve, a.



Definition 2 (Individual rationality). A matching is individual
rational if and only if there does not exist an applicant a (or a
college c) who prefers being unmatched to being matched with

u(a) (or p(c)), ie. 0 =4 p(a) (or O =, p(c)) should not exist.

Definition 3 (Blocking pair). A matching 1 is blocked by an
applicant-college pair (a, c) if they prefer each other to the match
they receive at (1. That is, ¢ =, p(a) and a =. a’,d a’ € u(c).

Definition 4 (Stablility). A matching (v is stable if and only if it
is both individually rational and not blocked by any other pairing
between applicants and colleges.



How can we add multiple
constraints in the existing
matching problem?



1: while N 4 ) do > N denotes the set of unassigned users
2: 1 < 0
3 foru e N do
4: s < the i*" item from L(u)
5: Add u to the set of users on hold at server s, H(s)
6: end for
7: N 0
8: for s € S do
9: for u € H(s) do 1> iterate in the ranked order in L(s)
10: Add c(u) into the set of community IDs C(s)
11: ( if b(s,u) < B(s) and [C(s)] < P(s) then> _ Conditions to satisfy
12; B(s) « B(s) — B(s, u) constraints
13: else
14: Remove u from H(s)
15: Add u into the set of rejected users R(s)
16: Remove c(u) from C(s)
17: end if
18: end for
19: N =N UR(s)
20: end for
21: 1< 1+ 1

22: end while
23: return the final matching H(s)




Fully decentralized
Optimization solution
Stability

Scalabllity



Fully decentralized
Optimization solution
Stability

Scalabllity

Is it Safe and Effective in the real world?



An experimental case study —
Multi-server federated learning
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Communication time (s)
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Privacy,
communication overhead,
performance and latency are guaranteed



Objectives Revisited

Educate

* fully decentralized
 community interests

* processing capacities on the
Servers

e |atencies and bandwidth of links

* privacy
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